Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
d/(da)(tan(a)+cot(a))
\frac{d}{da}(\tan(a)+\cot(a))
8y^{''}+31y=0
8y^{\prime\:\prime\:}+31y=0
(dy)/(dx)=((2x+xy^2))/(4y+yx^2)
\frac{dy}{dx}=\frac{(2x+xy^{2})}{4y+yx^{2}}
(dy}{dx}=\frac{6+3y)/x
\frac{dy}{dx}=\frac{6+3y}{x}
derivative of 2x^4arctan(5x^3)
derivative\:2x^{4}\arctan(5x^{3})
integral of ln^2(2x)
\int\:\ln^{2}(2x)dx
d/(du)(uv)
\frac{d}{du}(uv)
limit as x approaches 0 of-(sin(x))/(3x)
\lim\:_{x\to\:0}(-\frac{\sin(x)}{3x})
integral of xsqrt(x+9)
\int\:x\sqrt{x+9}dx
limit as x approaches-1 of x^2-5x+6
\lim\:_{x\to\:-1}(x^{2}-5x+6)
(\partial)/(\partial y)(3x^2-3y)
\frac{\partial\:}{\partial\:y}(3x^{2}-3y)
integral of ((sqrt(x^2-9)))/(x^3)
\int\:\frac{(\sqrt{x^{2}-9})}{x^{3}}dx
derivative of (6x+5(x^3-2))
\frac{d}{dx}((6x+5)(x^{3}-2))
integral of (tan(x)+1)/(tan(x)-1)
\int\:\frac{\tan(x)+1}{\tan(x)-1}dx
(dy)/(dx)y=(9x-6)/(54x^2)
\frac{dy}{dx}y=\frac{9x-6}{54x^{2}}
integral of-(e^{2t})/2
\int\:-\frac{e^{2t}}{2}dt
integral from-1 to 2 of (2x^2-4x+5)
\int\:_{-1}^{2}(2x^{2}-4x+5)dx
(\partial)/(\partial x)(2x^4y-2)
\frac{\partial\:}{\partial\:x}(2x^{4}y-2)
integral of 1/(1+e^{6x)}
\int\:\frac{1}{1+e^{6x}}dx
sum from n=1 to infinity of 5/(n+2)
\sum\:_{n=1}^{\infty\:}\frac{5}{n+2}
integral of (x^3+3)
\int\:(x^{3}+3)dx
e^x(dy)/(dx)=e^{-y}+e^{2x-y}
e^{x}\frac{dy}{dx}=e^{-y}+e^{2x-y}
area cos(x),sin(x)
area\:\cos(x),\sin(x)
2x^2y^{''}+3xy^'=y
2x^{2}y^{\prime\:\prime\:}+3xy^{\prime\:}=y
area 2cos(7x),2-2cos(7x),0<= x<= pi/7
area\:2\cos(7x),2-2\cos(7x),0\le\:x\le\:\frac{π}{7}
integral from 0 to 1 of e^{-st}*t
\int\:_{0}^{1}e^{-st}\cdot\:tdt
integral of e^{-4t}
\int\:e^{-4t}dt
(dy)/(dt)=6y+cos(3t)
\frac{dy}{dt}=6y+\cos(3t)
integral of ((t^2+t+1)/((t+3)^3))
\int\:(\frac{t^{2}+t+1}{(t+3)^{3}})dt
-y+10e^{-t}=y^'
-y+10e^{-t}=y^{\prime\:}
integral of ln(6x)
\int\:\ln(6x)dx
laplacetransform sin(2t)+cos(2t)
laplacetransform\:\sin(2t)+\cos(2t)
integral of sin^3(3θ)sqrt(cos(3θ))
\int\:\sin^{3}(3θ)\sqrt{\cos(3θ)}dθ
xy^'+y=-2xy^2,y(1)=-3
xy^{\prime\:}+y=-2xy^{2},y(1)=-3
derivative of 4/(11-x)
\frac{d}{dx}(\frac{4}{11-x})
derivative of y=xsqrt(2x+3)
derivative\:y=x\sqrt{2x+3}
integral of 7^xtan(7^x)
\int\:7^{x}\tan(7^{x})dx
limit as x approaches pi/2 of e^{sin(x)}
\lim\:_{x\to\:\frac{π}{2}}(e^{\sin(x)})
limit as x approaches 0 of (xcos(x))/x
\lim\:_{x\to\:0}(\frac{x\cos(x)}{x})
derivative of 3/(x^2+9)
\frac{d}{dx}(\frac{3}{x^{2}+9})
(\partial)/(\partial y)(ye^{-x^2+y})
\frac{\partial\:}{\partial\:y}(ye^{-x^{2}+y})
integral of (x^2+3)/(xsqrt(x^2-9))
\int\:\frac{x^{2}+3}{x\sqrt{x^{2}-9}}dx
(\partial)/(\partial x)(cos^6(x^8y^6))
\frac{\partial\:}{\partial\:x}(\cos^{6}(x^{8}y^{6}))
area y=2x-x^2,y=2x-4
area\:y=2x-x^{2},y=2x-4
limit as x approaches 9 of ((x^{1/2}-3)(x+1))/(x^2-8x-9)
\lim\:_{x\to\:9}(\frac{(x^{\frac{1}{2}}-3)(x+1)}{x^{2}-8x-9})
derivative of y=(3x^2-2x-4)5^x
derivative\:y=(3x^{2}-2x-4)5^{x}
integral of (5000ln(x+20))/((x+20)^2)
\int\:\frac{5000\ln(x+20)}{(x+20)^{2}}dx
derivative of-5e^{3x}
\frac{d}{dx}(-5e^{3x})
integral of 4\sqrt[6]{x}
\int\:4\sqrt[6]{x}dx
integral of (1+x)/(-4x-2x^2)
\int\:\frac{1+x}{-4x-2x^{2}}dx
derivative of (e^{5x}/(x^{15)})
\frac{d}{dx}(\frac{e^{5x}}{x^{15}})
derivative of b(x+a^3+c)
\frac{d}{dx}(b(x+a)^{3}+c)
(\partial)/(\partial x)(xye^{x/y})
\frac{\partial\:}{\partial\:x}(xye^{\frac{x}{y}})
limit as x approaches infinity of x*2
\lim\:_{x\to\:\infty\:}(x\cdot\:2)
integral of (x^3)/(\sqrt[3]{x^2+5)}
\int\:\frac{x^{3}}{\sqrt[3]{x^{2}+5}}dx
(\partial)/(\partial x)(x^4+y^4+z^4-4xyz)
\frac{\partial\:}{\partial\:x}(x^{4}+y^{4}+z^{4}-4xyz)
integral from 0 to pi/4 of cos^7(x)
\int\:_{0}^{\frac{π}{4}}\cos^{7}(x)dx
(\partial)/(\partial x)(y^2-4y+xy)
\frac{\partial\:}{\partial\:x}(y^{2}-4y+xy)
derivative of (x^3)/8
derivative\:\frac{x^{3}}{8}
integral of cos^4(6x)
\int\:\cos^{4}(6x)dx
derivative of 1/e e^x
\frac{d}{dx}(\frac{1}{e}e^{x})
derivative of 1/x+1/(x-1)+1/(x-2)
derivative\:\frac{1}{x}+\frac{1}{x-1}+\frac{1}{x-2}
integral of x^2*sin(x^3)
\int\:x^{2}\cdot\:\sin(x^{3})dx
sum from n=1 to infinity of 15(1/100)^n
\sum\:_{n=1}^{\infty\:}15(\frac{1}{100})^{n}
derivative of (x^2/2+1/x)
\frac{d}{dx}(\frac{x^{2}}{2}+\frac{1}{x})
derivative of sqrt(x)(x^5+2)
derivative\:\sqrt{x}(x^{5}+2)
limit as x approaches 0 of (2x^2+x)^x
\lim\:_{x\to\:0}((2x^{2}+x)^{x})
y^{''}+y= 1/((cos(2x))^{3/2)}
y^{\prime\:\prime\:}+y=\frac{1}{(\cos(2x))^{\frac{3}{2}}}
limit as x approaches 2+of (8+x)/(2-x)
\lim\:_{x\to\:2+}(\frac{8+x}{2-x})
integral of (10x^2)/(sqrt(1+x^3))
\int\:\frac{10x^{2}}{\sqrt{1+x^{3}}}dx
y^'=-y(3-ty)
y^{\prime\:}=-y(3-ty)
tangent of f(x)=sin(sin(x)),(4pi,0)
tangent\:f(x)=\sin(\sin(x)),(4π,0)
integral of 1/(sqrt(2x))
\int\:\frac{1}{\sqrt{2x}}dx
integral of x^2sec^2(x)
\int\:x^{2}\sec^{2}(x)dx
integral of (x+7)^2
\int\:(x+7)^{2}dx
integral of (x^2)/(sqrt(2+x^3))
\int\:\frac{x^{2}}{\sqrt{2+x^{3}}}dx
area x,(x^2)/4 ,0,2
area\:x,\frac{x^{2}}{4},0,2
2y^{'''}+3y^{''}-11y^'-6y=0
2y^{\prime\:\prime\:\prime\:}+3y^{\prime\:\prime\:}-11y^{\prime\:}-6y=0
integral of (24)/((144x^2+1)^2)
\int\:\frac{24}{(144x^{2}+1)^{2}}dx
integral from 0 to 9 of e^xsin(x)
\int\:_{0}^{9}e^{x}\sin(x)dx
integral from 0 to x of sqrt(3t+5)
\int\:_{0}^{x}\sqrt{3t+5}dt
laplacetransform e^{-t}+e^t
laplacetransform\:e^{-t}+e^{t}
y^{''}+4y^'+5y=5x+3e^{-x}
y^{\prime\:\prime\:}+4y^{\prime\:}+5y=5x+3e^{-x}
2t(dy)/(dt)+y=t^4
2t\frac{dy}{dt}+y=t^{4}
limit as x approaches-2-of 4x^2-7
\lim\:_{x\to\:-2-}(4x^{2}-7)
integral of (sin(2x))/(cos^2(x))
\int\:\frac{\sin(2x)}{\cos^{2}(x)}dx
limit as x approaches 0 of sin^2(x)
\lim\:_{x\to\:0}(\sin^{2}(x))
derivative of e^{3tsin(2t)}
derivative\:e^{3t\sin(2t)}
limit as x approaches 7+of ln(x^2-49)
\lim\:_{x\to\:7+}(\ln(x^{2}-49))
integral of 4x^9
\int\:4x^{9}dx
area y=sin^2(x),y=sin^3(x),x=0,x=pi
area\:y=\sin^{2}(x),y=\sin^{3}(x),x=0,x=π
integral from 0 to 1 of (2x-1)^2
\int\:_{0}^{1}(2x-1)^{2}dx
y^{''}+400y=sec(20x)
y^{\prime\:\prime\:}+400y=\sec(20x)
limit as x approaches-3+of 4x^2-7
\lim\:_{x\to\:-3+}(4x^{2}-7)
integral of e^{2x}(x^2+2x)
\int\:e^{2x}(x^{2}+2x)dx
derivative of (t+4)^{(2/3)}(2t^2-4)^3
derivative\:(t+4)^{(\frac{2}{3})}(2t^{2}-4)^{3}
limit as x approaches 2 of sqrt(x^2+12)
\lim\:_{x\to\:2}(\sqrt{x^{2}+12})
(d^2)/(dx^2)(7/(8x^6))
\frac{d^{2}}{dx^{2}}(\frac{7}{8x^{6}})
tangent of f(x)=6x-32sqrt(x),\at x=4
tangent\:f(x)=6x-32\sqrt{x},\at\:x=4
derivative of f(x)=(x^2+sec(x))/(x-2e^x)
derivative\:f(x)=\frac{x^{2}+\sec(x)}{x-2e^{x}}
1
..
1196
1197
1198
1199
1200
..
2459