Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 2 of tan((pix)/4)
\lim\:_{x\to\:2}(\tan(\frac{πx}{4}))
(\partial)/(\partial x)(ln((2xy)/(7z)))
\frac{\partial\:}{\partial\:x}(\ln(\frac{2xy}{7z}))
limit as x approaches infinity of x/5
\lim\:_{x\to\:\infty\:}(\frac{x}{5})
tangent of f(x)=1\sqrt[3]{x},\at x=1
tangent\:f(x)=1\sqrt[3]{x},\at\:x=1
integral of (x+2)sin(x)
\int\:(x+2)\sin(x)dx
integral from-1 to 2 of (20-x^4)
\int\:_{-1}^{2}(20-x^{4})dx
derivative of 8x+4
\frac{d}{dx}(8x+4)
y/(1-x^2y^2)dx+x/(1-x^2y^2)dy=0
\frac{y}{1-x^{2}y^{2}}dx+\frac{x}{1-x^{2}y^{2}}dy=0
integral from 0 to 1 of 2ln(4x)
\int\:_{0}^{1}2\ln(4x)dx
integral of (2-3/(x^{10)})
\int\:(2-\frac{3}{x^{10}})dx
integral of-4y^3
\int\:-4y^{3}dy
integral of 1/(sqrt(x^2-4x+3))
\int\:\frac{1}{\sqrt{x^{2}-4x+3}}dx
d/(dy)((x^3y-xy^3)/(x^2+y^2))
\frac{d}{dy}(\frac{x^{3}y-xy^{3}}{x^{2}+y^{2}})
integral of e^{x^{-1/2}}
\int\:e^{x^{-\frac{1}{2}}}dx
integral of 1/(2x^2-4x+14)
\int\:\frac{1}{2x^{2}-4x+14}dx
integral of x5^x
\int\:x5^{x}dx
derivative of ee^xe^{x^2}
\frac{d}{dx}(ee^{x}e^{x^{2}})
integral from 0 to 1 of (8+x)/(1+x^2)
\int\:_{0}^{1}\frac{8+x}{1+x^{2}}dx
inverse oflaplace (5+s)/(s(s^2-5s+4))
inverselaplace\:\frac{5+s}{s(s^{2}-5s+4)}
derivative of 3/5
\frac{d}{dx}(\frac{3}{5})
derivative of (1+2x)/(1-2x)
derivative\:\frac{1+2x}{1-2x}
sum from n=9 to infinity of e^{3-6n}
\sum\:_{n=9}^{\infty\:}e^{3-6n}
(y^2-1)dx-(2y+xy)dy=0
(y^{2}-1)dx-(2y+xy)dy=0
tangent of y=x^2-3x+1
tangent\:y=x^{2}-3x+1
(\partial)/(\partial x)(4(x-y)e^{4y+4x^2})
\frac{\partial\:}{\partial\:x}(4(x-y)e^{4y+4x^{2}})
x^{''}+3x^'-10x=6e^{4t}
x^{\prime\:\prime\:}+3x^{\prime\:}-10x=6e^{4t}
(\partial)/(\partial x)(2yx^2-4)
\frac{\partial\:}{\partial\:x}(2yx^{2}-4)
integral from 2 to infinity of 1/(3x)
\int\:_{2}^{\infty\:}\frac{1}{3x}dx
derivative of sqrt(r^2-13x^2)
derivative\:\sqrt{r^{2}-13x^{2}}
y^'=3-2x-0.5y,y(0)=1
y^{\prime\:}=3-2x-0.5y,y(0)=1
derivative of (ln(x)^{sec(x)})
\frac{d}{dx}((\ln(x))^{\sec(x)})
(\partial)/(\partial y)(x*y^2*e^z)
\frac{\partial\:}{\partial\:y}(x\cdot\:y^{2}\cdot\:e^{z})
integral of 8/((x-5)(x+3))
\int\:\frac{8}{(x-5)(x+3)}dx
integral of e^x*ln(x)
\int\:e^{x}\cdot\:\ln(x)dx
sum from n=1 to infinity of n/(e^{n^2)}
\sum\:_{n=1}^{\infty\:}\frac{n}{e^{n^{2}}}
(\partial)/(\partial y)(e^{xy}-(x+1)cos(y))
\frac{\partial\:}{\partial\:y}(e^{xy}-(x+1)\cos(y))
limit as x approaches 0 of (x^3+7x)/x
\lim\:_{x\to\:0}(\frac{x^{3}+7x}{x})
area y=x^2-5,y=4
area\:y=x^{2}-5,y=4
integral from 6 to 8 of (64)/((x-6)^3)
\int\:_{6}^{8}\frac{64}{(x-6)^{3}}dx
integral of xcos(3x+1)
\int\:x\cos(3x+1)dx
integral of sin^7(3x)
\int\:\sin^{7}(3x)dx
derivative of \sqrt[5]{ln(6-x^2})
\frac{d}{dx}(\sqrt[5]{\ln(6-x^{2})})
derivative of 4xdx
\frac{d}{dx}(4xdx)
derivative of (x^2/(x^2-9))
\frac{d}{dx}(\frac{x^{2}}{x^{2}-9})
(\partial)/(\partial x)((y-2)tan(y))
\frac{\partial\:}{\partial\:x}((y-2)\tan(y))
derivative of y=-3sin(4-3x^4)
derivative\:y=-3\sin(4-3x^{4})
derivative of-0.1x^2+40x
\frac{d}{dx}(-0.1x^{2}+40x)
derivative of (2x+1)^5
derivative\:(2x+1)^{5}
derivative of y=x^{2/5}+6x
derivative\:y=x^{\frac{2}{5}}+6x
integral of 6e^t
\int\:6e^{t}dt
derivative of (2-2x-x^2/(x^2-4))
\frac{d}{dx}(\frac{2-2x-x^{2}}{x^{2}-4})
simplify 1/2 x^2ln^2(x)-2x^2ln(x)+5/2 x^2
simplify\:\frac{1}{2}x^{2}\ln^{2}(x)-2x^{2}\ln(x)+\frac{5}{2}x^{2}
derivative of (-7sin(x)/(4cos(x)))
\frac{d}{dx}(\frac{-7\sin(x)}{4\cos(x)})
derivative of f(x)=3x^4(x^2-4x)
derivative\:f(x)=3x^{4}(x^{2}-4x)
limit as x approaches 3 of (|3-x|)/(3-x)
\lim\:_{x\to\:3}(\frac{\left|3-x\right|}{3-x})
integral of (x^2)/(x+15)
\int\:\frac{x^{2}}{x+15}dx
integral from 1 to 3 of (x^2+1/(4x^2))
\int\:_{1}^{3}(x^{2}+\frac{1}{4x^{2}})dx
integral of (-4x^6-5x^5-2x^2+5-e^x)
\int\:(-4x^{6}-5x^{5}-2x^{2}+5-e^{x})dx
integral of (x+3)(x-3)
\int\:(x+3)(x-3)dx
y^{''}-2y^'=x+2e^x,y(0)=17,y^'(0)= 55/4
y^{\prime\:\prime\:}-2y^{\prime\:}=x+2e^{x},y(0)=17,y^{\prime\:}(0)=\frac{55}{4}
inverse oflaplace 1/(s^2-2s+26)
inverselaplace\:\frac{1}{s^{2}-2s+26}
(\partial)/(\partial y)(ln(1+x^2+e^y+z))
\frac{\partial\:}{\partial\:y}(\ln(1+x^{2}+e^{y}+z))
inverse oflaplace (s^2+6s+2)/(s(s+1)^2)
inverselaplace\:\frac{s^{2}+6s+2}{s(s+1)^{2}}
y^'=ty-2t+y-2
y^{\prime\:}=ty-2t+y-2
laplacetransform 3t^3-2t^2-7t+2
laplacetransform\:3t^{3}-2t^{2}-7t+2
(\partial)/(\partial x)(1^x)
\frac{\partial\:}{\partial\:x}(1^{x})
derivative of ((x^2+11))/(x^3)
derivative\:\frac{(x^{2}+11)}{x^{3}}
deg2rad (x''+4x)^'
deg2rad\:(x\prime\:\prime\:+4x)^{\prime\:}
limit as x approaches 0+of (x^2)/2-1/x
\lim\:_{x\to\:0+}(\frac{x^{2}}{2}-\frac{1}{x})
derivative of f(x)=24sqrt(x)-4x
derivative\:f(x)=24\sqrt{x}-4x
derivative of sqrt(4x^2+9)
\frac{d}{dx}(\sqrt{4x^{2}+9})
(ln(tan(x)))^'
(\ln(\tan(x)))^{\prime\:}
integral of (xsin(pi)x)
\int\:(x\sin(π)x)dx
integral of x^7(4^{-x^8})
\int\:x^{7}(4^{-x^{8}})dx
slope of (-2,4),(3,a)
slope\:(-2,4),(3,a)
derivative of 50
\frac{d}{dx}(50)
integral of sqrt(-3+r^2)r
\int\:\sqrt{-3+r^{2}}rdr
laplacetransform T+2
laplacetransform\:T+2
y^'=-y+5
y^{\prime\:}=-y+5
limit as x approaches 1 of (x-3)/2
\lim\:_{x\to\:1}(\frac{x-3}{2})
derivative of arctan(5cos(x))
\frac{d}{dx}(\arctan(5\cos(x)))
sum from k=1 to infinity of 1/(4^k)
\sum\:_{k=1}^{\infty\:}\frac{1}{4^{k}}
taylor sqrt(1+x^2)
taylor\:\sqrt{1+x^{2}}
tangent of f(x)=5x^2,\at x=-2
tangent\:f(x)=5x^{2},\at\:x=-2
derivative of y=t(ln(4t))^2
derivative\:y=t(\ln(4t))^{2}
limit as h approaches 0 of (2(x+h)-2x)/h
\lim\:_{h\to\:0}(\frac{2(x+h)-2x}{h})
integral of 1/(-y)
\int\:\frac{1}{-y}dy
integral of (e^yx^2)/y
\int\:\frac{e^{y}x^{2}}{y}
integral of (sqrt(x^2+1)+x)^4
\int\:(\sqrt{x^{2}+1}+x)^{4}dx
integral of (cos(x))/(sin(x)(1-sin(x)))
\int\:\frac{\cos(x)}{\sin(x)(1-\sin(x))}dx
d/(dt)(({v}(t))/t)
\frac{d}{dt}(\frac{{v}(t)}{t})
derivative of cos^3(sin(2x^4-x))
derivative\:\cos^{3}(\sin(2x^{4}-x))
area y=x^2-7,y=9
area\:y=x^{2}-7,y=9
integral of e^{-inwt}
\int\:e^{-inwt}dt
derivative of-3*e^{x^2+x-1}
\frac{d}{dx}(-3\cdot\:e^{x^{2}+x-1})
(\partial)/(\partial x)(-ln(1+e^{-x}))
\frac{\partial\:}{\partial\:x}(-\ln(1+e^{-x}))
derivative of f(w)=(6x-8)^2
derivative\:f(w)=(6x-8)^{2}
derivative of f(x)=7arctan(x-sqrt(1+x^2))
derivative\:f(x)=7\arctan(x-\sqrt{1+x^{2}})
derivative of f(x)=x^{x^x}
derivative\:f(x)=x^{x^{x}}
tangent of y=5x^{1/2}+x^{3/2},\at x=25
tangent\:y=5x^{\frac{1}{2}}+x^{\frac{3}{2}},\at\:x=25
1
..
1406
1407
1408
1409
1410
..
2459