Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of e^x*e^x
\int\:e^{x}\cdot\:e^{x}dx
sum from n=1 to infinity of 4/(5^n)
\sum\:_{n=1}^{\infty\:}\frac{4}{5^{n}}
derivative of 6x+8/3
derivative\:6x+\frac{8}{3}
integral of (ln^2(5))/(2x)
\int\:\frac{\ln^{2}(5)}{2x}dx
integral from 0 to pi/4 of xsin(16x)
\int\:_{0}^{\frac{π}{4}}x\sin(16x)dx
derivative of-3x^2cos(3x)
derivative\:-3x^{2}\cos(3x)
integral of ((ax)^3+e^{-bx})
\int\:((ax)^{3}+e^{-bx})dx
integral from 0 to 2 of x^3(7-x^2)^{1/2}
\int\:_{0}^{2}x^{3}(7-x^{2})^{\frac{1}{2}}dx
integral from 0 to 4 of (x^2-4x+3)
\int\:_{0}^{4}(x^{2}-4x+3)dx
4t(dy)/(dt)-5y=sqrt(t)
4t\frac{dy}{dt}-5y=\sqrt{t}
integral of-2*3^{6x}
\int\:-2\cdot\:3^{6x}dx
derivative of y=cot^2(x)
derivative\:y=\cot^{2}(x)
(\partial)/(\partial x)(sqrt(x^2+y^2)-z)
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}+y^{2}}-z)
limit as x approaches 3 of pi
\lim\:_{x\to\:3}(π)
xy^'+2y=5sqrt(x)
xy^{\prime\:}+2y=5\sqrt{x}
(\partial)/(\partial x)(t/(x+1))
\frac{\partial\:}{\partial\:x}(\frac{t}{x+1})
integral from-2pi to pi of sin^2(x)
\int\:_{-2π}^{π}\sin^{2}(x)dx
limit as x approaches 3 of (ln(x)-ln(3))/(x-3)
\lim\:_{x\to\:3}(\frac{\ln(x)-\ln(3)}{x-3})
sum from n=0 to infinity of e^{-n^2}
\sum\:_{n=0}^{\infty\:}e^{-n^{2}}
(\partial)/(\partial x)(z^3x)
\frac{\partial\:}{\partial\:x}(z^{3}x)
integral of 5sec(x+3)tan(x+3)
\int\:5\sec(x+3)\tan(x+3)dx
xy^'+3y=4x,y(3)=6
xy^{\prime\:}+3y=4x,y(3)=6
(\partial)/(\partial x)(x^3-6xy+y^3)
\frac{\partial\:}{\partial\:x}(x^{3}-6xy+y^{3})
(\partial)/(\partial z)(z^3-x^2y)
\frac{\partial\:}{\partial\:z}(z^{3}-x^{2}y)
y^'=(2t)/(y+t^2y)
y^{\prime\:}=\frac{2t}{y+t^{2}y}
integral of xln(2x-3)
\int\:x\ln(2x-3)dx
integral of 1/(x^2+10x+25)
\int\:\frac{1}{x^{2}+10x+25}dx
limit as n approaches infinity of 1/(n!)
\lim\:_{n\to\:\infty\:}(\frac{1}{n!})
limit as x approaches 0 of 1/(x^2(x+8))
\lim\:_{x\to\:0}(\frac{1}{x^{2}(x+8)})
y^{''}+4y=sin(2x)
y^{\prime\:\prime\:}+4y=\sin(2x)
integral from 0 to 8 of \sqrt[3]{x}
\int\:_{0}^{8}\sqrt[3]{x}dx
(dy)/(dx)+4y^2=0
\frac{dy}{dx}+4y^{2}=0
integral of 1/(tsqrt(t^2-1))
\int\:\frac{1}{t\sqrt{t^{2}-1}}dt
tangent of f(x)= 6/x ,\at x=5
tangent\:f(x)=\frac{6}{x},\at\:x=5
integral from 0 to 4 of te^{-t}
\int\:_{0}^{4}te^{-t}dt
inverse oflaplace (400)/(25s(s^2+200))
inverselaplace\:\frac{400}{25s(s^{2}+200)}
tangent of y=tan(x),(pi/4 ,1)
tangent\:y=\tan(x),(\frac{π}{4},1)
integral from 8 to 12 of 2/(x^3)
\int\:_{8}^{12}\frac{2}{x^{3}}dx
integral of (xln(x))^2
\int\:(x\ln(x))^{2}dx
(\partial)/(\partial x)(ye^y)
\frac{\partial\:}{\partial\:x}(ye^{y})
(\partial)/(\partial x)(5xy^3+15xy-4y^2)
\frac{\partial\:}{\partial\:x}(5xy^{3}+15xy-4y^{2})
derivative of x^2*y^3
\frac{d}{dx}(x^{2}\cdot\:y^{3})
limit as x approaches 0 of xsin((7pi)/x)
\lim\:_{x\to\:0}(x\sin(\frac{7π}{x}))
derivative of (xln(x+e))/(x^3+e^x)
derivative\:\frac{x\ln(x+e)}{x^{3}+e^{x}}
normal of 2x^2-3x+6,\at x=2
normal\:2x^{2}-3x+6,\at\:x=2
sum from n=5 to infinity of n!(x-4)^n
\sum\:_{n=5}^{\infty\:}n!(x-4)^{n}
slope of x^2
slope\:x^{2}
y^'sqrt(y-x^2y)=-xy
y^{\prime\:}\sqrt{y-x^{2}y}=-xy
integral of tan^5(x)sec^3(x)
\int\:\tan^{5}(x)\sec^{3}(x)dx
integral from 0 to 1 of xsqrt(x^2+4)
\int\:_{0}^{1}x\sqrt{x^{2}+4}dx
(\partial)/(\partial x)(sqrt(x^2))
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}})
integral of x^4-8x^3+26x^2-40x+25
\int\:x^{4}-8x^{3}+26x^{2}-40x+25dx
limit as x approaches 6 of sqrt(2x-3)
\lim\:_{x\to\:6}(\sqrt{2x-3})
limit as x approaches 7 of (x-7)/(x-7)
\lim\:_{x\to\:7}(\frac{x-7}{x-7})
derivative of x^3-5e^{2x}
\frac{d}{dx}(x^{3}-5e^{2x})
derivative of e^{-e^{-x}}
\frac{d}{dx}(e^{-e^{-x}})
limit as x approaches 0.5+of 3x
\lim\:_{x\to\:0.5+}(3x)
derivative of (3x^2+3x-2(2x-1)(-2x))
\frac{d}{dx}((3x^{2}+3x-2)(2x-1)(-2x))
derivative of {f}(x(x)^{-1}(x))
\frac{d}{dx}({f}(x)(x)^{-1}(x))
limit as x approaches 1 of 1/((x-1)^2)
\lim\:_{x\to\:1}(\frac{1}{(x-1)^{2}})
integral from 1 to infinity of e^x
\int\:_{1}^{\infty\:}e^{x}dx
derivative of (64x-4)(8x^2-x+5)
derivative\:(64x-4)(8x^{2}-x+5)
d/(dt)(te^{-t})
\frac{d}{dt}(te^{-t})
integral of (3-sin(x))
\int\:(3-\sin(x))dx
integral from 0 to 7 of xe^{-2x}
\int\:_{0}^{7}xe^{-2x}dx
derivative of 64sin(2x)
\frac{d}{dx}(64\sin(2x))
derivative of sec^9(2^x)
\frac{d}{dx}(\sec^{9}(2^{x}))
derivative of x^{-8}
derivative\:x^{-8}
(\partial)/(\partial x)(e^{(3x+5y)})
\frac{\partial\:}{\partial\:x}(e^{(3x+5y)})
integral of 7ln(\sqrt[3]{x})
\int\:7\ln(\sqrt[3]{x})dx
derivative of x*e^x+e^x
\frac{d}{dx}(x\cdot\:e^{x}+e^{x})
derivative of ((x^2+4/(x^2-4))^4)
\frac{d}{dx}((\frac{x^{2}+4}{x^{2}-4})^{4})
integral of ((x^2-3x+1))/(x^2+x)
\int\:\frac{(x^{2}-3x+1)}{x^{2}+x}dx
integral of tan^9(x)
\int\:\tan^{9}(x)dx
integral of e^{-x^2-y^2}
\int\:e^{-x^{2}-y^{2}}
derivative of f(x)= x/(x^2+8)
derivative\:f(x)=\frac{x}{x^{2}+8}
derivative of f(x)=e^{x^3ln(x)}
derivative\:f(x)=e^{x^{3}\ln(x)}
integral of (9sin(x)+4sec(x))/(tan(x))
\int\:\frac{9\sin(x)+4\sec(x)}{\tan(x)}dx
derivative of f(x)= 6/(3x+1)
derivative\:f(x)=\frac{6}{3x+1}
derivative of f(x)=8-2x
derivative\:f(x)=8-2x
integral of (x^3)/(x^4+1)
\int\:\frac{x^{3}}{x^{4}+1}dx
(\partial)/(\partial y)(e^{4xy})
\frac{\partial\:}{\partial\:y}(e^{4xy})
sum from n=0 to infinity of (e/(10))^n
\sum\:_{n=0}^{\infty\:}(\frac{e}{10})^{n}
area y=5(x^3-x),y=0
area\:y=5(x^{3}-x),y=0
derivative of x^2(x+1)^3
derivative\:x^{2}(x+1)^{3}
(dx)/(dt)=6-(3x)/(500),x(0)=0
\frac{dx}{dt}=6-\frac{3x}{500},x(0)=0
tangent of x/(x^2+1)
tangent\:\frac{x}{x^{2}+1}
tangent of f(x)=x^2-1,\at x=-1
tangent\:f(x)=x^{2}-1,\at\:x=-1
inverse oflaplace 6/((s^2+9)^2)
inverselaplace\:\frac{6}{(s^{2}+9)^{2}}
derivative of 6e^x+8/(\sqrt[3]{x)}
derivative\:6e^{x}+\frac{8}{\sqrt[3]{x}}
limit as x approaches 2+of 7/(x-2)
\lim\:_{x\to\:2+}(\frac{7}{x-2})
(dy)/(dx)+(7/x)y=x+2
\frac{dy}{dx}+(\frac{7}{x})y=x+2
integral from-2 to 3 of 1/(1+9t^2)
\int\:_{-2}^{3}\frac{1}{1+9t^{2}}dt
integral of (sqrt(x))/(1+\sqrt[4]{x)}
\int\:\frac{\sqrt{x}}{1+\sqrt[4]{x}}dx
tangent of x^2-2(-4.14)
tangent\:x^{2}-2(-4.14)
integral of-sin(x)
\int\:-\sin(x)dx
area x=4y-y^2,x=y^2-7y
area\:x=4y-y^{2},x=y^{2}-7y
taylor 1/(x+1),1,2
taylor\:\frac{1}{x+1},1,2
(\partial)/(\partial y)(6x^{2y})
\frac{\partial\:}{\partial\:y}(6x^{2y})
(x^2-1)y^'+2xy^2=0,y(0)=1
(x^{2}-1)y^{\prime\:}+2xy^{2}=0,y(0)=1
1
..
398
399
400
401
402
..
2459