Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
d/(da)(1+cos^4(a)-sin^4(a))
\frac{d}{da}(1+\cos^{4}(a)-\sin^{4}(a))
limit as x approaches infinity of (2x)/x
\lim\:_{x\to\:\infty\:}(\frac{2x}{x})
y^{''}+3y^'+2y=e^{3x}sin(2x)
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=e^{3x}\sin(2x)
implicit (dy)/(dx),y=x^3+2
implicit\:\frac{dy}{dx},y=x^{3}+2
limit as x approaches infinity of e^0
\lim\:_{x\to\:\infty\:}(e^{0})
derivative of 9x^2+6x-2
\frac{d}{dx}(9x^{2}+6x-2)
integral from 0 to infinity of x/(x^4+1)
\int\:_{0}^{\infty\:}\frac{x}{x^{4}+1}dx
limit as x approaches 1 of (x+2)/(1-x)
\lim\:_{x\to\:1}(\frac{x+2}{1-x})
derivative of x^{10}e^x+10
\frac{d}{dx}(x^{10}e^{x}+10)
derivative of f(x)=\sqrt[7]{x}
derivative\:f(x)=\sqrt[7]{x}
d/(dθ)(cos(θ)i+3sin(θ)j)
\frac{d}{dθ}(\cos(θ)i+3\sin(θ)j)
derivative of (e^x/(5x^2+9))
\frac{d}{dx}(\frac{e^{x}}{5x^{2}+9})
integral of (2x+7)/((x-1)^2(x+1))
\int\:\frac{2x+7}{(x-1)^{2}(x+1)}dx
integral from 1 to 2 of 18x^24^{x^3}
\int\:_{1}^{2}18x^{2}4^{x^{3}}dx
integral of (x^2)/(sqrt(x+1))
\int\:\frac{x^{2}}{\sqrt{x+1}}dx
limit as x approaches 0-of 1+e^{1/x}
\lim\:_{x\to\:0-}(1+e^{\frac{1}{x}})
laplacetransform 3t^2+15t+15
laplacetransform\:3t^{2}+15t+15
slope of y=(5x^2-1)^{-3}
slope\:y=(5x^{2}-1)^{-3}
integral from-infinity to 0 of xe^{8x}
\int\:_{-\infty\:}^{0}xe^{8x}dx
derivative of 2x^2-4x
derivative\:2x^{2}-4x
(\partial)/(\partial z)(-z)
\frac{\partial\:}{\partial\:z}(-z)
integral of 1/((x-2)(x-3))
\int\:\frac{1}{(x-2)(x-3)}dx
y^{'''}+3y^{''}-16y^'-48y=0
y^{\prime\:\prime\:\prime\:}+3y^{\prime\:\prime\:}-16y^{\prime\:}-48y=0
integral from-3 to 3 of (18)/(x^2-6x-72)
\int\:_{-3}^{3}\frac{18}{x^{2}-6x-72}dx
(\partial)/(\partial y)((2x)/((2x+3y)^2))
\frac{\partial\:}{\partial\:y}(\frac{2x}{(2x+3y)^{2}})
derivative of f(x)=e^t
derivative\:f(x)=e^{t}
derivative of ln|sin(x)|
derivative\:\ln\left|\sin(x)\right|
tangent of y=sqrt(2x+1),(4,3)
tangent\:y=\sqrt{2x+1},(4,3)
derivative of 2t^{-1/4}
derivative\:2t^{-\frac{1}{4}}
integral of (x^2)/(e^{x/3)}
\int\:\frac{x^{2}}{e^{\frac{x}{3}}}dx
laplacetransform 5*t
laplacetransform\:5\cdot\:t
integral of 1/(x^2sqrt(x^2+25))
\int\:\frac{1}{x^{2}\sqrt{x^{2}+25}}dx
(\partial)/(\partial y)(sqrt(x/y))
\frac{\partial\:}{\partial\:y}(\sqrt{\frac{x}{y}})
derivative of (4083)/(1+6.22e^{-0.32x)}
derivative\:\frac{4083}{1+6.22e^{-0.32x}}
derivative of f(x)= 4/3 pir^3
derivative\:f(x)=\frac{4}{3}πr^{3}
integral of 24x^2(6-5x^3)^7
\int\:24x^{2}(6-5x^{3})^{7}dx
tangent of f(x)= x/(sqrt(9+x^2)),\at x=0
tangent\:f(x)=\frac{x}{\sqrt{9+x^{2}}},\at\:x=0
y^{''}+2y^'+2y=sin(5t)
y^{\prime\:\prime\:}+2y^{\prime\:}+2y=\sin(5t)
x^2(dy)/(dx)-2xy=3y^4,y(1)= 1/2
x^{2}\frac{dy}{dx}-2xy=3y^{4},y(1)=\frac{1}{2}
integral of ln(8x)
\int\:\ln(8x)dx
integral of t^{1/3}
\int\:t^{\frac{1}{3}}dt
derivative of sin(5x-3)
derivative\:\sin(5x-3)
integral of 9x^2\sqrt[4]{7+4x^3}
\int\:9x^{2}\sqrt[4]{7+4x^{3}}dx
integral of x^3ln^2(x)
\int\:x^{3}\ln^{2}(x)dx
(\partial)/(\partial x)(ysin(y/x))
\frac{\partial\:}{\partial\:x}(y\sin(\frac{y}{x}))
limit as x approaches-4 of 5x+2
\lim\:_{x\to\:-4}(5x+2)
limit as x approaches-2 of ((3))/((x+2))
\lim\:_{x\to\:-2}(\frac{(3)}{(x+2)})
integral from 0 to 6 of pi/4 (36-y^2)
\int\:_{0}^{6}\frac{π}{4}(36-y^{2})dy
integral from 0 to 1 of 34.6e^{-0.06t}
\int\:_{0}^{1}34.6e^{-0.06t}dt
integral from 0 to 0.15 of x
\int\:_{0}^{0.15}xdx
limit as x approaches 0 of x^9cos(4/x)
\lim\:_{x\to\:0}(x^{9}\cos(\frac{4}{x}))
integral of 1/(xsqrt(49x^4-4))
\int\:\frac{1}{x\sqrt{49x^{4}-4}}dx
y^{''}-y^'-2y=te^{2t}
y^{\prime\:\prime\:}-y^{\prime\:}-2y=te^{2t}
derivative of-1/9 (x^{-9}-x^{18})
derivative\:-\frac{1}{9}(x^{-9}-x^{18})
integral of ln(9x+1)
\int\:\ln(9x+1)dx
derivative of 3sqrt(x)+8
\frac{d}{dx}(3\sqrt{x}+8)
t((dy)/(dt))=2te^t-y+6t^2
t(\frac{dy}{dt})=2te^{t}-y+6t^{2}
integral from 0 to 2pi of sin^2(t)
\int\:_{0}^{2π}\sin^{2}(t)dt
(\partial)/(\partial x)(25x^{(3/4)}y^{1/4})
\frac{\partial\:}{\partial\:x}(25x^{(\frac{3}{4})}y^{\frac{1}{4}})
y^'+(2(y-1))/x =0
y^{\prime\:}+\frac{2(y-1)}{x}=0
derivative of sqrt(2x)+2sqrt(x)
\frac{d}{dx}(\sqrt{2x}+2\sqrt{x})
integral from 0 to 1 of sqrt(e^{2x)}
\int\:_{0}^{1}\sqrt{e^{2x}}dx
area 15-x^2,x^2-3
area\:15-x^{2},x^{2}-3
sum from n=1 to infinity of 2e^{-9n}
\sum\:_{n=1}^{\infty\:}2e^{-9n}
integral of te^{8t}
\int\:te^{8t}dt
derivative of f(x)=5x^{-3/5}
derivative\:f(x)=5x^{-\frac{3}{5}}
tangent of y=x^3-7x^2+8x+1
tangent\:y=x^{3}-7x^{2}+8x+1
integral of (64)/(x^3-8x^2)
\int\:\frac{64}{x^{3}-8x^{2}}dx
derivative of (3x^2-x-1/(\sqrt[3]{x)})
\frac{d}{dx}(\frac{3x^{2}-x-1}{\sqrt[3]{x}})
2y^{''}+y^'-4y=0,y(0)=0,y^'(0)=1
2y^{\prime\:\prime\:}+y^{\prime\:}-4y=0,y(0)=0,y^{\prime\:}(0)=1
(\partial)/(\partial y)(x*e^{x*y})
\frac{\partial\:}{\partial\:y}(x\cdot\:e^{x\cdot\:y})
(\partial)/(\partial x)(-x/((x^2+y^2)))
\frac{\partial\:}{\partial\:x}(-\frac{x}{(x^{2}+y^{2})})
y^{''}-2y^'+y=8e^x
y^{\prime\:\prime\:}-2y^{\prime\:}+y=8e^{x}
limit as x approaches 0+of (ln(x))^2
\lim\:_{x\to\:0+}((\ln(x))^{2})
derivative of sec^2(x)+tan^2(x)
derivative\:\sec^{2}(x)+\tan^{2}(x)
tangent of f(x)=15x-1.86x^2,\at x=a
tangent\:f(x)=15x-1.86x^{2},\at\:x=a
derivative of 7^{x^2}
\frac{d}{dx}(7^{x^{2}})
integral of-3x^2-20x+2000
\int\:-3x^{2}-20x+2000dx
(1+x^2)(dy)/(dx)-(4x^3y)/(1-x^2)=1
(1+x^{2})\frac{dy}{dx}-\frac{4x^{3}y}{1-x^{2}}=1
integral of 3x^2+8x-9
\int\:3x^{2}+8x-9dx
(\partial)/(\partial x)(ln(t+2cx))
\frac{\partial\:}{\partial\:x}(\ln(t+2cx))
derivative of f(x)=ax^b+de^{-cx}
derivative\:f(x)=ax^{b}+de^{-cx}
integral of (4^x-sec^2(x))
\int\:(4^{x}-\sec^{2}(x))dx
integral of 1 (e^{-x}y)
\int\:\frac{d}{1}(e^{-x}y)dx
limit as x approaches 0 of (e^{2x}-1)/x
\lim\:_{x\to\:0}(\frac{e^{2x}-1}{x})
(dy)/(dx)=(x+y^2)/(2y),y(0)=1
\frac{dy}{dx}=\frac{x+y^{2}}{2y},y(0)=1
integral of (x^5)/(x^6-7)
\int\:\frac{x^{5}}{x^{6}-7}dx
derivative of f(x)=arccos(4x^2)
derivative\:f(x)=\arccos(4x^{2})
limit as θ approaches 0 of 1/11
\lim\:_{θ\to\:0}(\frac{1}{11})
laplacetransform sin^2(x)
laplacetransform\:\sin^{2}(x)
limit as x approaches 0+of (2^x)/(3^x-1)
\lim\:_{x\to\:0+}(\frac{2^{x}}{3^{x}-1})
derivative of (x+2sqrt(x)e^x)
\frac{d}{dx}((x+2\sqrt{x})e^{x})
integral of sqrt(16-5x^2)
\int\:\sqrt{16-5x^{2}}dx
slope of (2,5),(-6,-3)
slope\:(2,5),(-6,-3)
derivative of (sin(x)/(2x))
\frac{d}{dx}(\frac{\sin(x)}{2x})
integral from-3 to 3 of sqrt(9-x^2)
\int\:_{-3}^{3}\sqrt{9-x^{2}}dx
integral from-2 to 2 of (x^2-4)^2
\int\:_{-2}^{2}(x^{2}-4)^{2}dx
limit as x approaches 4 of (x-4)/(x+5)
\lim\:_{x\to\:4}(\frac{x-4}{x+5})
integral of (e^{2x}*,x)
\int\:(e^{2x}\cdot\:,x)dx
derivative of (8*sqrt(x))/(x^2+p)
derivative\:\frac{8\cdot\:\sqrt{x}}{x^{2}+p}
1
..
397
398
399
400
401
..
2459