Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(6x^5y^6+8x^7y^8)
\frac{\partial\:}{\partial\:x}(6x^{5}y^{6}+8x^{7}y^{8})
(\partial)/(\partial x)(xarcsin(3x))
\frac{\partial\:}{\partial\:x}(x\arcsin(3x))
f(x)=sin(4x^2)
f(x)=\sin(4x^{2})
limit as x approaches 0 of (cos(2x))/(sin(2x))
\lim\:_{x\to\:0}(\frac{\cos(2x)}{\sin(2x)})
tangent of f(x)=x^3-3x^2+2x-2,\at x=2
tangent\:f(x)=x^{3}-3x^{2}+2x-2,\at\:x=2
derivative of 2/(r^3)
derivative\:\frac{2}{r^{3}}
limit as x approaches 0 of 1/(ln(x))
\lim\:_{x\to\:0}(\frac{1}{\ln(x)})
inverse oflaplace 2/(s(s^2+4))
inverselaplace\:\frac{2}{s(s^{2}+4)}
f(x)=-2cos(2x)
f(x)=-2\cos(2x)
integral from 0 to pi/2 of 9sin^2(3x)
\int\:_{0}^{\frac{π}{2}}9\sin^{2}(3x)dx
sum from n=1 to infinity of ne^{-2n}
\sum\:_{n=1}^{\infty\:}ne^{-2n}
(x+y)dx-(x+y+3)dy=0
(x+y)dx-(x+y+3)dy=0
integral of 6x^2\sqrt[3]{x}
\int\:6x^{2}\sqrt[3]{x}dx
tangent of y=x^3-3x+2,(4,54)
tangent\:y=x^{3}-3x+2,(4,54)
inverse oflaplace (s^2+12)/(s^4-16)
inverselaplace\:\frac{s^{2}+12}{s^{4}-16}
derivative of (x^2/(2-x))
\frac{d}{dx}(\frac{x^{2}}{2-x})
limit as x approaches 0 of sin(x)ln(x)
\lim\:_{x\to\:0}(\sin(x)\ln(x))
integral of (29x^2)/(sqrt(x^2-4))
\int\:\frac{29x^{2}}{\sqrt{x^{2}-4}}dx
area y=x^2+2x,y=x+2
area\:y=x^{2}+2x,y=x+2
integral of 1/8 t
\int\:\frac{1}{8}tdt
derivative of y=sqrt(tan(2x))
derivative\:y=\sqrt{\tan(2x)}
integral of ((x))/((4x^{(2))-12x+25)}
\int\:\frac{(x)}{(4x^{(2)}-12x+25)}dx
limit as x approaches 0+of 1/(1-cos(x))
\lim\:_{x\to\:0+}(\frac{1}{1-\cos(x)})
limit as x approaches 4 of (x-5)/((x-4)^2)
\lim\:_{x\to\:4}(\frac{x-5}{(x-4)^{2}})
xy^'+2y=-4sin(x)
xy^{\prime\:}+2y=-4\sin(x)
tangent of 2x^2+xy+2y^2=5,(1,1)
tangent\:2x^{2}+xy+2y^{2}=5,(1,1)
integral of x(x^2+4)^2
\int\:x(x^{2}+4)^{2}dx
integral of (sec^4(t))/(tan^2(t))
\int\:\frac{\sec^{4}(t)}{\tan^{2}(t)}dt
integral of (tan(ln(5x+6)))/(5x+6)
\int\:\frac{\tan(\ln(5x+6))}{5x+6}dx
derivative of (x^2+2x/(4-5x))
\frac{d}{dx}(\frac{x^{2}+2x}{4-5x})
derivative of y/(sqrt(x^2+y^2))
\frac{d}{dx}(\frac{y}{\sqrt{x^{2}+y^{2}}})
sum from n=0 to infinity of e^2
\sum\:_{n=0}^{\infty\:}e^{2}
derivative of d-ax-b-d/(x^2)
\frac{d}{dx}(d-ax-b-\frac{d}{x^{2}})
tangent of f(x)=tan(x),\at x= pi/4
tangent\:f(x)=\tan(x),\at\:x=\frac{π}{4}
derivative of f(x)=(2-3x-x^2)/(x^2-5)
derivative\:f(x)=\frac{2-3x-x^{2}}{x^{2}-5}
integral of x^e+2/x+sec^2(2x)
\int\:x^{e}+\frac{2}{x}+\sec^{2}(2x)dx
limit as x approaches 0 of (cos(7x)tan(7x))/x
\lim\:_{x\to\:0}(\frac{\cos(7x)\tan(7x)}{x})
tangent of f(x)=(1+x)cos(x),\at x=0
tangent\:f(x)=(1+x)\cos(x),\at\:x=0
tangent of y= 1/3 x^2-2x+4,(3,1)
tangent\:y=\frac{1}{3}x^{2}-2x+4,(3,1)
derivative of cos(tan(4x))
\frac{d}{dx}(\cos(\tan(4x)))
derivative of (x^3-6x^2+5/x)
\frac{d}{dx}(\frac{x^{3}-6x^{2}+5}{x})
sum from n=0 to infinity of (1/6)^n
\sum\:_{n=0}^{\infty\:}(\frac{1}{6})^{n}
(\partial)/(\partial y)(e^{xy})
\frac{\partial\:}{\partial\:y}(e^{xy})
(\partial)/(\partial y)(3cos(y))
\frac{\partial\:}{\partial\:y}(3\cos(y))
limit as x approaches 3 of ((x^4-81))/(x-3)
\lim\:_{x\to\:3}(\frac{(x^{4}-81)}{x-3})
derivative of f(x)=(x^5-4x^3-7)^8
derivative\:f(x)=(x^{5}-4x^{3}-7)^{8}
integral of (32)/(1+16x^2)
\int\:\frac{32}{1+16x^{2}}dx
sum from n=1 to infinity of (1/5)^{n-1}
\sum\:_{n=1}^{\infty\:}(\frac{1}{5})^{n-1}
laplacetransform t+4
laplacetransform\:t+4
laplacetransform 10e^{-10t}
laplacetransform\:10e^{-10t}
derivative of f(x)=ln(x^4)
derivative\:f(x)=\ln(x^{4})
integral of cos(1/3 x)
\int\:\cos(\frac{1}{3}x)dx
inverse oflaplace 1/((s-7)^3)
inverselaplace\:\frac{1}{(s-7)^{3}}
sum from n=1 to infinity of (2n)/(n^2+1)
\sum\:_{n=1}^{\infty\:}\frac{2n}{n^{2}+1}
area y=e^{-3x},x>= 0
area\:y=e^{-3x},x\ge\:0
derivative of 3/(4x^5)
derivative\:\frac{3}{4x^{5}}
limit as x approaches infinity of 1^{2x}
\lim\:_{x\to\:\infty\:}(1^{2x})
limit as x approaches 0+of 7/(1+e^{1/x)}
\lim\:_{x\to\:0+}(\frac{7}{1+e^{\frac{1}{x}}})
sum from n=1 to infinity of n(n+1)x^n
\sum\:_{n=1}^{\infty\:}n(n+1)x^{n}
integral of x^3*2^{-x}
\int\:x^{3}\cdot\:2^{-x}dx
y^{''}+y=0,y(pi/3)=8,y^'(pi/3)=-16
y^{\prime\:\prime\:}+y=0,y(\frac{π}{3})=8,y^{\prime\:}(\frac{π}{3})=-16
inverse oflaplace (s+10)/(s^3(s+2.5)^2)
inverselaplace\:\frac{s+10}{s^{3}(s+2.5)^{2}}
integral of (3x+4)/(sqrt(3x+5))
\int\:\frac{3x+4}{\sqrt{3x+5}}dx
integral from a to p of b/(x(1-x))
\int\:_{a}^{p}\frac{b}{x(1-x)}dx
derivative of \sqrt[6]{x^5}
\frac{d}{dx}(\sqrt[6]{x^{5}})
integral of 1/(2\sqrt[3]{x)+sqrt(x)}
\int\:\frac{1}{2\sqrt[3]{x}+\sqrt{x}}dx
sum from n=0 to infinity of (e^n)/n
\sum\:_{n=0}^{\infty\:}\frac{e^{n}}{n}
(dy)/(dx)=0.5y+x
\frac{dy}{dx}=0.5y+x
derivative of \sqrt[3]{27x^2}-1/(\sqrt[3]{27x^2})
\frac{d}{dx}(\sqrt[3]{27x^{2}}-\frac{1}{\sqrt[3]{27x^{2}}})
integral of (8x^3)/(x^4+5)
\int\:\frac{8x^{3}}{x^{4}+5}dx
limit as x approaches 0-of-1
\lim\:_{x\to\:0-}(-1)
f(x)=8ln(x)-x^2
f(x)=8\ln(x)-x^{2}
derivative of x+3e^{-x}
\frac{d}{dx}(x+3e^{-x})
(\partial)/(\partial y)(5x^{y/z})
\frac{\partial\:}{\partial\:y}(5x^{\frac{y}{z}})
integral of (x^3+3x+4)/(x^4+16x^2)
\int\:\frac{x^{3}+3x+4}{x^{4}+16x^{2}}dx
derivative of (x^2+1/(x-3))
\frac{d}{dx}(\frac{x^{2}+1}{x-3})
limit as x approaches-8 of-3/7 x+10/11
\lim\:_{x\to\:-8}(-\frac{3}{7}x+\frac{10}{11})
derivative of 7/(x-1)
\frac{d}{dx}(\frac{7}{x-1})
limit as x approaches 6-of \sqrt[3]{x-6}
\lim\:_{x\to\:6-}(\sqrt[3]{x-6})
tangent of f(x)=x^2,(2,4)
tangent\:f(x)=x^{2},(2,4)
integral of x+1/x
\int\:x+\frac{1}{x}dx
derivative of ((7x^2-8^4)/x)
\frac{d}{dx}(\frac{(7x^{2}-8)^{4}}{x})
(\partial)/(\partial z)(1)
\frac{\partial\:}{\partial\:z}(1)
taylor e^xcos(x)
taylor\:e^{x}\cos(x)
integral of 6e^2
\int\:6e^{2}dx
(\partial)/(\partial x)(xsin(y-z))
\frac{\partial\:}{\partial\:x}(x\sin(y-z))
integral of (3x-1/x)^2
\int\:(3x-\frac{1}{x})^{2}dx
d/(dy)((y^6)/6+1/(16y^4))
\frac{d}{dy}(\frac{y^{6}}{6}+\frac{1}{16y^{4}})
derivative of 3+t^5+sin(pit)
derivative\:3+t^{5}+\sin(πt)
(dy)/(dx)= y/x-cos(y/x)
\frac{dy}{dx}=\frac{y}{x}-\cos(\frac{y}{x})
integral of (x^4-6x)
\int\:(x^{4}-6x)dx
integral of (sin(20x))/(1+cos^2(20x))
\int\:\frac{\sin(20x)}{1+\cos^{2}(20x)}dx
integral from-8 to 27 of 1/(\sqrt[3]{x)}
\int\:_{-8}^{27}\frac{1}{\sqrt[3]{x}}dx
2y^{''}+35y=0,y(0)=9,y^'(0)=6
2y^{\prime\:\prime\:}+35y=0,y(0)=9,y^{\prime\:}(0)=6
(\partial)/(\partial x)(xe^{x^2-y^2})
\frac{\partial\:}{\partial\:x}(xe^{x^{2}-y^{2}})
y^{''}+y=5e^{-7t}
y^{\prime\:\prime\:}+y=5e^{-7t}
laplacetransform e^{-5t}sin(2t)
laplacetransform\:e^{-5t}\sin(2t)
integral of-x^2+4x
\int\:-x^{2}+4xdx
(2xy-sec^2(x))dx+(x^2+2y)dy=0
(2xy-\sec^{2}(x))dx+(x^{2}+2y)dy=0
integral of ((sqrt(x)+9)/(2\sqrt[3]{x)})
\int\:(\frac{\sqrt{x}+9}{2\sqrt[3]{x}})dx
1
..
650
651
652
653
654
..
2459