Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
parity f(x)=(3x+x^3+4)/(-5x^3-2x^2+5)
parity\:f(x)=\frac{3x+x^{3}+4}{-5x^{3}-2x^{2}+5}
domain of f(x)=x^{1/4}
domain\:f(x)=x^{\frac{1}{4}}
inverse of f(x)=(x+4)/3
inverse\:f(x)=\frac{x+4}{3}
inverse of f(x)=-1/(x+2)
inverse\:f(x)=-\frac{1}{x+2}
line (2,11),(-1,2)
line\:(2,11),(-1,2)
extreme f(x)=5sin(5x)
extreme\:f(x)=5\sin(5x)
intercepts of f(x)=4x^2+4y=16
intercepts\:f(x)=4x^{2}+4y=16
parity (3x^2-2)/(x^3-2x-8)
parity\:\frac{3x^{2}-2}{x^{3}-2x-8}
symmetry y=x^2-4x
symmetry\:y=x^{2}-4x
critical (x^3-1)/(x^2)
critical\:\frac{x^{3}-1}{x^{2}}
inverse of f(x)=ln(x^2-1)+1
inverse\:f(x)=\ln(x^{2}-1)+1
slope ofintercept 5x+2y=14
slopeintercept\:5x+2y=14
critical f(x)=((x^3))/(x^2-1)
critical\:f(x)=\frac{(x^{3})}{x^{2}-1}
asymptotes of (x^2-25)/(-2x^2-10x)
asymptotes\:\frac{x^{2}-25}{-2x^{2}-10x}
asymptotes of (-1)/(x^2-2x+1)
asymptotes\:\frac{-1}{x^{2}-2x+1}
domain of (5-2x)/(6x+3)
domain\:\frac{5-2x}{6x+3}
domain of y=log_{a}(x)
domain\:y=\log_{a}(x)
domain of f(x)=5sqrt(x)+1
domain\:f(x)=5\sqrt{x}+1
inverse of f(x)=4+sqrt(3x-2)
inverse\:f(x)=4+\sqrt{3x-2}
monotone x^3-11x^2+39x-47
monotone\:x^{3}-11x^{2}+39x-47
domain of f(x)=2x+2
domain\:f(x)=2x+2
domain of f(x)=x^2
domain\:f(x)=x^{2}
simplify (1.5)(9.3)
simplify\:(1.5)(9.3)
inverse of f(x)=-1/2 sqrt(x+3)
inverse\:f(x)=-\frac{1}{2}\sqrt{x+3}
symmetry x^2-y^2=9
symmetry\:x^{2}-y^{2}=9
extreme f(x)=-3x^2+18x+16
extreme\:f(x)=-3x^{2}+18x+16
inverse of f(x)= 9/(x-7)
inverse\:f(x)=\frac{9}{x-7}
inverse of y=x-1
inverse\:y=x-1
domain of f(x)=(x-6)/(x^2-36)
domain\:f(x)=\frac{x-6}{x^{2}-36}
intercepts of-4y=-40
intercepts\:-4y=-40
extreme f(x)=6x^2-2x^3
extreme\:f(x)=6x^{2}-2x^{3}
extreme f(x)= x/(x^2+11x+28)
extreme\:f(x)=\frac{x}{x^{2}+11x+28}
simplify (0.2)(8.8)
simplify\:(0.2)(8.8)
domain of f(x)=sqrt(x-2)+5
domain\:f(x)=\sqrt{x-2}+5
inflection \sqrt[3]{x^2}
inflection\:\sqrt[3]{x^{2}}
parity y=csc(θ)(θ+cot(θ))
parity\:y=\csc(θ)(θ+\cot(θ))
inverse of y=e^x-e^{-x}
inverse\:y=e^{x}-e^{-x}
slope of 3y=4x+5
slope\:3y=4x+5
inverse of f(x)=8x-5
inverse\:f(x)=8x-5
domain of sqrt(-x^2-3x+4)
domain\:\sqrt{-x^{2}-3x+4}
domain of f(x)=(11)/(11-x)
domain\:f(x)=\frac{11}{11-x}
domain of 6x+1
domain\:6x+1
asymptotes of f(x)=3x^2-x^2+4x-6y-13=0
asymptotes\:f(x)=3x^{2}-x^{2}+4x-6y-13=0
monotone 8/(xsqrt(x^2-4))
monotone\:\frac{8}{x\sqrt{x^{2}-4}}
domain of f(x)=4-x^2
domain\:f(x)=4-x^{2}
domain of (2x+11)/(3x+19)
domain\:\frac{2x+11}{3x+19}
line 2x-3y= 7/5
line\:2x-3y=\frac{7}{5}
inverse of f(x)=sqrt(x^2+7x)
inverse\:f(x)=\sqrt{x^{2}+7x}
inverse of f(x)= 4/(11-2x)
inverse\:f(x)=\frac{4}{11-2x}
asymptotes of sqrt(3)-tan(x/2+pi/3)
asymptotes\:\sqrt{3}-\tan(\frac{x}{2}+\frac{π}{3})
range of f(x)=-sqrt(9-x^2)
range\:f(x)=-\sqrt{9-x^{2}}
domain of f(x)=sqrt(x^2-72)
domain\:f(x)=\sqrt{x^{2}-72}
inverse of f(x)= x/4+7
inverse\:f(x)=\frac{x}{4}+7
domain of f(x)=sqrt(x/(x+1))
domain\:f(x)=\sqrt{\frac{x}{x+1}}
inverse of f(x)=(2x+5)/(7+x)
inverse\:f(x)=\frac{2x+5}{7+x}
inflection-x^6+42x^5-42x+17
inflection\:-x^{6}+42x^{5}-42x+17
distance (4,2),(0,4)
distance\:(4,2),(0,4)
domain of (sqrt(5x))/(7x-2)
domain\:\frac{\sqrt{5x}}{7x-2}
critical (x^2)/(x^2+3)
critical\:\frac{x^{2}}{x^{2}+3}
inverse of f(x)=6x^4
inverse\:f(x)=6x^{4}
inverse of f(x)= 1/2 (x-1)^2-5
inverse\:f(x)=\frac{1}{2}(x-1)^{2}-5
line (1,8),(-2,5)
line\:(1,8),(-2,5)
midpoint (4,3),(-1,-3)
midpoint\:(4,3),(-1,-3)
slope of 15x-5y=70
slope\:15x-5y=70
parallel y+6=-1/2 (x+8),(-5,3)
parallel\:y+6=-\frac{1}{2}(x+8),(-5,3)
inverse of f(x)=xsqrt(4-x^2)
inverse\:f(x)=x\sqrt{4-x^{2}}
inverse of f(x)=2x+14
inverse\:f(x)=2x+14
slope of 2x-3y-6=0
slope\:2x-3y-6=0
range of f(x)=-4x^2-8x-6
range\:f(x)=-4x^{2}-8x-6
simplify (0)(3.4)
simplify\:(0)(3.4)
inverse of f(x)=e^{3x}
inverse\:f(x)=e^{3x}
range of (e^{-x})/((1+e^{-x))^2}
range\:\frac{e^{-x}}{(1+e^{-x})^{2}}
inverse of 2x+24
inverse\:2x+24
domain of f(x)=(6-x)/(x+7)
domain\:f(x)=\frac{6-x}{x+7}
inflection f(x)=(7-2x)e^x
inflection\:f(x)=(7-2x)e^{x}
slope ofintercept 5x-4y=12
slopeintercept\:5x-4y=12
domain of f(x)=sqrt(5x-1)
domain\:f(x)=\sqrt{5x-1}
slope of 2x+3y=4
slope\:2x+3y=4
periodicity of f(x)=-5cos(4x)
periodicity\:f(x)=-5\cos(4x)
inverse of f(x)=3^x-2
inverse\:f(x)=3^{x}-2
domain of f(x)= 7/(3+e^x)
domain\:f(x)=\frac{7}{3+e^{x}}
domain of f(x)=sqrt(2x^2+x-3)
domain\:f(x)=\sqrt{2x^{2}+x-3}
domain of 24^{-x}+8
domain\:24^{-x}+8
domain of (x+2)/(x^2-16)
domain\:\frac{x+2}{x^{2}-16}
critical-2x^3-6x^2+18x+1
critical\:-2x^{3}-6x^{2}+18x+1
parity f(x)=11
parity\:f(x)=11
domain of f(y)=2x+b
domain\:f(y)=2x+b
domain of f(x)=x^2-6x+9
domain\:f(x)=x^{2}-6x+9
extreme x^3-4x^2-16x+9
extreme\:x^{3}-4x^{2}-16x+9
symmetry 2x^2-6x+3
symmetry\:2x^{2}-6x+3
intercepts of f(x)=2(x-1)^2-8
intercepts\:f(x)=2(x-1)^{2}-8
parallel 5x+7y=8
parallel\:5x+7y=8
domain of (x+2)e^{1/x}
domain\:(x+2)e^{\frac{1}{x}}
domain of h(x)=sqrt(x^2-9)
domain\:h(x)=\sqrt{x^{2}-9}
asymptotes of f(x)=(x^2+x)/(-x^2+4x)
asymptotes\:f(x)=\frac{x^{2}+x}{-x^{2}+4x}
f(x)=x^2+3x+4
f(x)=x^{2}+3x+4
domain of y=arctan((x-1)/(x+1))
domain\:y=\arctan(\frac{x-1}{x+1})
slope of 3x-2y=5
slope\:3x-2y=5
parallel y=5x+11,(-1,6)
parallel\:y=5x+11,(-1,6)
asymptotes of f(x)=(x^3*e^2)/(x*ln(x)*e)
asymptotes\:f(x)=\frac{x^{3}\cdot\:e^{2}}{x\cdot\:\ln(x)\cdot\:e}
1
..
240
241
242
243
244
..
1324