Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
line (0.01,0.2),(0.025,0.6)
line\:(0.01,0.2),(0.025,0.6)
slope of 1-(8y+6x)/2 =4
slope\:1-\frac{8y+6x}{2}=4
domain of 9x+48
domain\:9x+48
f(x)=\sqrt[3]{x}
f(x)=\sqrt[3]{x}
periodicity of f(x)=3tan(2/3 x)
periodicity\:f(x)=3\tan(\frac{2}{3}x)
inverse of f(x)=3x^3-8
inverse\:f(x)=3x^{3}-8
inverse of f(x)=((x-7))/((x+3))
inverse\:f(x)=\frac{(x-7)}{(x+3)}
inverse of f(x)=\sqrt[3]{(-x-3)/2}
inverse\:f(x)=\sqrt[3]{\frac{-x-3}{2}}
inverse of f(x)=(-16+n)/4
inverse\:f(x)=\frac{-16+n}{4}
domain of f(x)=sqrt(-x)-7
domain\:f(x)=\sqrt{-x}-7
slope of y= 3/4 x-3
slope\:y=\frac{3}{4}x-3
slope ofintercept y-x=-5
slopeintercept\:y-x=-5
domain of f(x)=arccos((2x+1)/(x-3))
domain\:f(x)=\arccos(\frac{2x+1}{x-3})
critical (e^{2x})/(x-3)
critical\:\frac{e^{2x}}{x-3}
critical f(x)=xe^{-4x}
critical\:f(x)=xe^{-4x}
inflection f(x)=6x^4+8x^3
inflection\:f(x)=6x^{4}+8x^{3}
extreme y=(2x^3+2)/(x^2)
extreme\:y=\frac{2x^{3}+2}{x^{2}}
extreme f(x)=(x^3+1)/(x^2)
extreme\:f(x)=\frac{x^{3}+1}{x^{2}}
inverse of f(x)=(x^3+8)^5
inverse\:f(x)=(x^{3}+8)^{5}
extreme (x^3)/(x^2+1)
extreme\:\frac{x^{3}}{x^{2}+1}
domain of f(x)=sqrt(5x-4)
domain\:f(x)=\sqrt{5x-4}
inverse of y=-2(x-3)^2+1
inverse\:y=-2(x-3)^{2}+1
inverse of y=x^2+4x+4
inverse\:y=x^{2}+4x+4
domain of f(x)=sqrt(x)
domain\:f(x)=\sqrt{x}
inverse of f(x)=(1-4x)/(2x+9)
inverse\:f(x)=\frac{1-4x}{2x+9}
domain of f(x)=4+8x-5x^2
domain\:f(x)=4+8x-5x^{2}
inverse of f(x)=sqrt(x+9)-2
inverse\:f(x)=\sqrt{x+9}-2
domain of f(x)=sqrt(2x+30)
domain\:f(x)=\sqrt{2x+30}
inverse of f(x)=-sqrt(3)
inverse\:f(x)=-\sqrt{3}
inverse of x+5
inverse\:x+5
inverse of x^2+9
inverse\:x^{2}+9
critical y=x^{9/2}-7x^2
critical\:y=x^{\frac{9}{2}}-7x^{2}
range of f(x)= 1/(1+x^2)
range\:f(x)=\frac{1}{1+x^{2}}
range of f(x)= x/((x-2)(x+3))
range\:f(x)=\frac{x}{(x-2)(x+3)}
inverse of f(x)=a(1-1/(1-2^{-x)})
inverse\:f(x)=a(1-\frac{1}{1-2^{-x}})
inflection f(x)=-x^3+9x^2-52
inflection\:f(x)=-x^{3}+9x^{2}-52
range of 1/(x^2)
range\:\frac{1}{x^{2}}
domain of f(x)=5sqrt(x-3)
domain\:f(x)=5\sqrt{x-3}
domain of (x^2+5)/2
domain\:\frac{x^{2}+5}{2}
inverse of h(x)= 5/7 x^5-3
inverse\:h(x)=\frac{5}{7}x^{5}-3
domain of f(x)=(4x^2+1)/(x^2-9)
domain\:f(x)=\frac{4x^{2}+1}{x^{2}-9}
slope ofintercept 5-(2y+3x)=7(x-y)
slopeintercept\:5-(2y+3x)=7(x-y)
critical 3sin(x)
critical\:3\sin(x)
domain of (1-3t)/(5+t)
domain\:\frac{1-3t}{5+t}
asymptotes of f(x)=6x^4+8x^3
asymptotes\:f(x)=6x^{4}+8x^{3}
midpoint (1,7),(3,-2)
midpoint\:(1,7),(3,-2)
domain of sqrt(27-3x)
domain\:\sqrt{27-3x}
asymptotes of f(x)=(2x+8)/(9x^2-49)
asymptotes\:f(x)=\frac{2x+8}{9x^{2}-49}
domain of sqrt(9-x^2)+sqrt(x+2)
domain\:\sqrt{9-x^{2}}+\sqrt{x+2}
monotone f(x)=(x^2)/(1+x)
monotone\:f(x)=\frac{x^{2}}{1+x}
inflection y=x^3
inflection\:y=x^{3}
parallel 5x+6y=-36
parallel\:5x+6y=-36
line y+1=3(x-4)
line\:y+1=3(x-4)
slope ofintercept x+7y=-7
slopeintercept\:x+7y=-7
inverse of f(x)=(-x+4)/(2x+8)
inverse\:f(x)=\frac{-x+4}{2x+8}
range of f(x)=2sqrt(x+3)+5
range\:f(x)=2\sqrt{x+3}+5
inflection 3x^4+4x^3
inflection\:3x^{4}+4x^{3}
periodicity of arctan((x-1)/(x+1))
periodicity\:\arctan(\frac{x-1}{x+1})
asymptotes of x^2
asymptotes\:x^{2}
domain of f(x)=\sqrt[4]{x^2-5x}
domain\:f(x)=\sqrt[4]{x^{2}-5x}
asymptotes of f(x)=4x^2+1
asymptotes\:f(x)=4x^{2}+1
extreme f(x)= 1/2 x^2-x
extreme\:f(x)=\frac{1}{2}x^{2}-x
critical f(x)= x/((x^3-1))
critical\:f(x)=\frac{x}{(x^{3}-1)}
inverse of f(x)=(-3)/(2x+5)
inverse\:f(x)=\frac{-3}{2x+5}
critical f(x)=xsqrt(49-x^2)
critical\:f(x)=x\sqrt{49-x^{2}}
domain of f(x)=sqrt(x-1)sqrt(1-x)
domain\:f(x)=\sqrt{x-1}\sqrt{1-x}
domain of f(x)=(x-1)^2+2
domain\:f(x)=(x-1)^{2}+2
domain of f(x)=2(x+1)
domain\:f(x)=2(x+1)
critical x^2-7
critical\:x^{2}-7
domain of f(x)=sqrt(x^2-3)
domain\:f(x)=\sqrt{x^{2}-3}
domain of f(x)=-3/2 x-1
domain\:f(x)=-\frac{3}{2}x-1
slope of 9x+3y=3
slope\:9x+3y=3
domain of 5x-1
domain\:5x-1
range of f(x)=6-2^{-x+1}
range\:f(x)=6-2^{-x+1}
domain of f(x)= x/(sqrt(x-5))
domain\:f(x)=\frac{x}{\sqrt{x-5}}
domain of f(x)=(x^2)/(x-7)
domain\:f(x)=\frac{x^{2}}{x-7}
range of 2sqrt(x)
range\:2\sqrt{x}
range of |x-1|
range\:\left|x-1\right|
domain of f(x)=-sqrt(x+3)-1
domain\:f(x)=-\sqrt{x+3}-1
midpoint (-3,-6),(9,3)
midpoint\:(-3,-6),(9,3)
midpoint (-3,-1),(0,3)
midpoint\:(-3,-1),(0,3)
slope ofintercept x= 3/4 y-3
slopeintercept\:x=\frac{3}{4}y-3
domain of x/7+5/7+(2x+10)/(7(7x^2-2))
domain\:\frac{x}{7}+\frac{5}{7}+\frac{2x+10}{7(7x^{2}-2)}
inverse of f(x)=3-2e^{-x}
inverse\:f(x)=3-2e^{-x}
inverse of f(x)=9x+6
inverse\:f(x)=9x+6
domain of f(x)=9+4x^2
domain\:f(x)=9+4x^{2}
extreme y=(x-8)^2
extreme\:y=(x-8)^{2}
domain of f(x)=sqrt(3x+7)+1
domain\:f(x)=\sqrt{3x+7}+1
midpoint (-6,-1),(2,3)
midpoint\:(-6,-1),(2,3)
inverse of f(x)=(x+1)/(x+9)
inverse\:f(x)=\frac{x+1}{x+9}
line (100,16),(50,8)
line\:(100,16),(50,8)
asymptotes of f(x)=-log_{2}(x+5)-1
asymptotes\:f(x)=-\log_{2}(x+5)-1
line 3x+4y+8=0
line\:3x+4y+8=0
inverse of y=12x-4x^2
inverse\:y=12x-4x^{2}
domain of y=sqrt(x+6)-7
domain\:y=\sqrt{x+6}-7
y=sqrt(x+4)
y=\sqrt{x+4}
inverse of f(x)=(2x-1)/2
inverse\:f(x)=\frac{2x-1}{2}
domain of (x-sqrt(x)(2x^2-5))/(2x^2-5)
domain\:\frac{x-\sqrt{x}(2x^{2}-5)}{2x^{2}-5}
domain of sqrt(1+2x)
domain\:\sqrt{1+2x}
inverse of sqrt(8x)
inverse\:\sqrt{8x}
1
..
242
243
244
245
246
..
1324