Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of 3
inverse\:3
inverse of f(x)=(x^{1/3}+7)^7
inverse\:f(x)=(x^{\frac{1}{3}}+7)^{7}
asymptotes of f(x)=(x^4-1)/(3x^2-3x)
asymptotes\:f(x)=\frac{x^{4}-1}{3x^{2}-3x}
range of f(x)=\sqrt[5]{x}
range\:f(x)=\sqrt[5]{x}
domain of f(x)= x/(sqrt(16-x))
domain\:f(x)=\frac{x}{\sqrt{16-x}}
extreme f(x)=9-8x-4x^2
extreme\:f(x)=9-8x-4x^{2}
critical f(x)=-16x^2+30x+3
critical\:f(x)=-16x^{2}+30x+3
inverse of f(x)=(x+2)^3+6
inverse\:f(x)=(x+2)^{3}+6
critical f(x)=2x-2
critical\:f(x)=2x-2
symmetry y=2x^2-8x+6
symmetry\:y=2x^{2}-8x+6
simplify (1)(1.2)
simplify\:(1)(1.2)
range of (sqrt(x-4))/(x-11)
range\:\frac{\sqrt{x-4}}{x-11}
inverse of 3x+14
inverse\:3x+14
parity f(x)=3x^3+1
parity\:f(x)=3x^{3}+1
inverse of ln(x)1.525
inverse\:\ln(x)1.525
domain of x/(9x-7)
domain\:\frac{x}{9x-7}
slope ofintercept 5x+9y-45=0
slopeintercept\:5x+9y-45=0
domain of (15x^2)/(x+5)
domain\:\frac{15x^{2}}{x+5}
domain of f(x)=2+sqrt(x)
domain\:f(x)=2+\sqrt{x}
parallel 4x+5y=9,(4,-2)
parallel\:4x+5y=9,(4,-2)
domain of f(x)=sqrt(25-x^2)-sqrt(x+3)
domain\:f(x)=\sqrt{25-x^{2}}-\sqrt{x+3}
inverse of f(x)=x^3+18
inverse\:f(x)=x^{3}+18
inverse of f(x)=e^{x^3}
inverse\:f(x)=e^{x^{3}}
symmetry x^2+x
symmetry\:x^{2}+x
inverse of sqrt(x)-7
inverse\:\sqrt{x}-7
periodicity of y=cos(x)
periodicity\:y=\cos(x)
line (0.318,0.00687),(3.109,0.02061)
line\:(0.318,0.00687),(3.109,0.02061)
domain of f(x)=7x^2+3x-2
domain\:f(x)=7x^{2}+3x-2
domain of 4/(x+4)
domain\:\frac{4}{x+4}
inverse of sqrt(-x+3)
inverse\:\sqrt{-x+3}
inverse of f(x)=-7x+1
inverse\:f(x)=-7x+1
inverse of f(x)=(x+4)^3-1
inverse\:f(x)=(x+4)^{3}-1
intercepts of f(x)=-2x^2+5x-6
intercepts\:f(x)=-2x^{2}+5x-6
range of 2x-5
range\:2x-5
simplify (4.4)(1.7)
simplify\:(4.4)(1.7)
inverse of \sqrt[3]{x}-1
inverse\:\sqrt[3]{x}-1
domain of f(x)=(2x)/(3x-1)
domain\:f(x)=\frac{2x}{3x-1}
slope ofintercept x+y=2
slopeintercept\:x+y=2
domain of y=x^2+3
domain\:y=x^{2}+3
inverse of-6x-7
inverse\:-6x-7
critical 14cos(θ)+7sin^2(θ)
critical\:14\cos(θ)+7\sin^{2}(θ)
slope of 3x+5y=-5
slope\:3x+5y=-5
monotone (3x)/(2-x)
monotone\:\frac{3x}{2-x}
range of f(x)=x^2-8x
range\:f(x)=x^{2}-8x
range of sqrt(x^2-16)
range\:\sqrt{x^{2}-16}
distance (0,0),(0.15,1.9621)
distance\:(0,0),(0.15,1.9621)
domain of e^{sqrt(x+x^2)}
domain\:e^{\sqrt{x+x^{2}}}
inverse of y=(3x)/(x-2)
inverse\:y=\frac{3x}{x-2}
inverse of f(x)=4^{3x-1}
inverse\:f(x)=4^{3x-1}
domain of f(x)=x^{7/6}
domain\:f(x)=x^{\frac{7}{6}}
slope ofintercept 3x-2y=24
slopeintercept\:3x-2y=24
asymptotes of 1/(x+1)
asymptotes\:\frac{1}{x+1}
line 2y+3x=-5
line\:2y+3x=-5
global x^3-5x
global\:x^{3}-5x
intercepts of y=x^2-36
intercepts\:y=x^{2}-36
asymptotes of f(x)=(x+3)/(x(x+10))
asymptotes\:f(x)=\frac{x+3}{x(x+10)}
inverse of \sqrt[4]{x-7}
inverse\:\sqrt[4]{x-7}
inverse of f(x)= 1/((x-1)^2)
inverse\:f(x)=\frac{1}{(x-1)^{2}}
perpendicular y= 5/9 x-4,(-5,5)
perpendicular\:y=\frac{5}{9}x-4,(-5,5)
domain of f(x)=2(x+5)
domain\:f(x)=2(x+5)
simplify (-4.8)(3.5)
simplify\:(-4.8)(3.5)
domain of f(x)= 1/(4x)
domain\:f(x)=\frac{1}{4x}
domain of f(x)=sqrt(10-5x)
domain\:f(x)=\sqrt{10-5x}
domain of f(x)=1+2x-x^2
domain\:f(x)=1+2x-x^{2}
range of f(x)= x/(x^2-9)
range\:f(x)=\frac{x}{x^{2}-9}
asymptotes of f(x)=(3x+5)/(7-6x)
asymptotes\:f(x)=\frac{3x+5}{7-6x}
inverse of f(x)=15000+1.5x
inverse\:f(x)=15000+1.5x
critical f(x)=96x^4-3x
critical\:f(x)=96x^{4}-3x
intercepts of y=sqrt(x+4)
intercepts\:y=\sqrt{x+4}
parallel y=-8x+9,(6,4)
parallel\:y=-8x+9,(6,4)
inverse of f(x)=3+sqrt(2x-7)
inverse\:f(x)=3+\sqrt{2x-7}
inverse of f(x)={\sqrt[3]{x-1},x>= 1}
inverse\:f(x)=\left\{\sqrt[3]{x-1},x\ge\:1\right\}
intercepts of x^3+x^2-3x-1
intercepts\:x^{3}+x^{2}-3x-1
inverse of f(x)=(2-(1-3x))/((2x-5))
inverse\:f(x)=\frac{2-(1-3x)}{(2x-5)}
range of 1/(sqrt(x^2+1))
range\:\frac{1}{\sqrt{x^{2}+1}}
shift-6sin(3x+pi/2)
shift\:-6\sin(3x+\frac{π}{2})
domain of x^2-2x-8
domain\:x^{2}-2x-8
domain of f(x)=16x^5-12x^3+4x^2-3
domain\:f(x)=16x^{5}-12x^{3}+4x^{2}-3
inverse of f(x)= x/8-3
inverse\:f(x)=\frac{x}{8}-3
domain of f(x)=(2x^2)/(x^2-1)
domain\:f(x)=\frac{2x^{2}}{x^{2}-1}
intercepts of f(x)=(x+1)^2(x-4)^3(x-3)
intercepts\:f(x)=(x+1)^{2}(x-4)^{3}(x-3)
simplify (4.3)(-2.6)
simplify\:(4.3)(-2.6)
inverse of f(x)=1+(2+x)^{1/2}
inverse\:f(x)=1+(2+x)^{\frac{1}{2}}
asymptotes of (2x)/(x^2-25)
asymptotes\:\frac{2x}{x^{2}-25}
domain of 6/(x+1)
domain\:\frac{6}{x+1}
inverse of y=log_{10}(x)
inverse\:y=\log_{10}(x)
intercepts of f(x)=-6/11
intercepts\:f(x)=-\frac{6}{11}
intercepts of f(x)=(x-5)(x+1)(5x+15)
intercepts\:f(x)=(x-5)(x+1)(5x+15)
inflection f(x)=x^3e^x
inflection\:f(x)=x^{3}e^{x}
perpendicular y=-7/3 x+4,(-10,-5)
perpendicular\:y=-\frac{7}{3}x+4,(-10,-5)
inverse of f(x)=(x-3)/(x+4)
inverse\:f(x)=\frac{x-3}{x+4}
domain of f(x)= 1/4 x-2
domain\:f(x)=\frac{1}{4}x-2
parity f(-x)=(x^2+5)/x
parity\:f(-x)=\frac{x^{2}+5}{x}
f(x)=x^2-5x+6
f(x)=x^{2}-5x+6
inflection (e^x-e^{-x})/9
inflection\:\frac{e^{x}-e^{-x}}{9}
asymptotes of f(x)=(-3x+15)/(x^2-5x)
asymptotes\:f(x)=\frac{-3x+15}{x^{2}-5x}
slope ofintercept x+2y=10
slopeintercept\:x+2y=10
slope of (2(-1)-3)/(2(-1)+5)
slope\:\frac{2(-1)-3}{2(-1)+5}
monotone f(x)= 1/3 x^3-3/x x^2
monotone\:f(x)=\frac{1}{3}x^{3}-\frac{3}{x}x^{2}
asymptotes of (2x^2-2x-24)/(x^2-4x+3)
asymptotes\:\frac{2x^{2}-2x-24}{x^{2}-4x+3}
1
..
260
261
262
263
264
..
1324