Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of (8-x)(3x+2)
domain\:(8-x)(3x+2)
monotone f(x)=2x^2+7x+10
monotone\:f(x)=2x^{2}+7x+10
asymptotes of f(x)=(x^2+x-20)/(x+5)
asymptotes\:f(x)=\frac{x^{2}+x-20}{x+5}
inverse of sqrt(4x+9)
inverse\:\sqrt{4x+9}
domain of-x+8
domain\:-x+8
inverse of-3x+4
inverse\:-3x+4
inverse of f(x)=10x^{1/3}-9
inverse\:f(x)=10x^{\frac{1}{3}}-9
inverse of f(x)=(x-3)^2
inverse\:f(x)=(x-3)^{2}
intercepts of (x-1)/(x^2)
intercepts\:\frac{x-1}{x^{2}}
extreme f(x)=x^2+3x-4
extreme\:f(x)=x^{2}+3x-4
perpendicular y=-1/3 x
perpendicular\:y=-\frac{1}{3}x
inverse of f(x)=(2x+5)/x
inverse\:f(x)=\frac{2x+5}{x}
asymptotes of (x-1)/(x^2-1)
asymptotes\:\frac{x-1}{x^{2}-1}
symmetry (x-1)^4+2
symmetry\:(x-1)^{4}+2
extreme f(x)=2x^2-10x+4
extreme\:f(x)=2x^{2}-10x+4
inverse of (x+5)^5
inverse\:(x+5)^{5}
intercepts of f(x)=-x+3
intercepts\:f(x)=-x+3
range of y=(2/7)(4)^{-x}+12
range\:y=(\frac{2}{7})(4)^{-x}+12
monotone f(x)=-x^4+12x^3
monotone\:f(x)=-x^{4}+12x^{3}
domain of x^6+2x^3-8
domain\:x^{6}+2x^{3}-8
inverse of (x+12)/(x-3)
inverse\:\frac{x+12}{x-3}
critical x/((x^2-1)^{1/3)}
critical\:\frac{x}{(x^{2}-1)^{\frac{1}{3}}}
domain of f(x)=(sqrt(x+1))/((x+4)(x-6))
domain\:f(x)=\frac{\sqrt{x+1}}{(x+4)(x-6)}
amplitude of f(x)= 1/2 cos(x)
amplitude\:f(x)=\frac{1}{2}\cos(x)
intercepts of f(x)=2(x-4)
intercepts\:f(x)=2(x-4)
domain of f(x)= 1/(7x)
domain\:f(x)=\frac{1}{7x}
domain of f(x)=9x+36
domain\:f(x)=9x+36
amplitude of 2+sin(4x)
amplitude\:2+\sin(4x)
inverse of f(x)=(8x-1)/(2x+9)
inverse\:f(x)=\frac{8x-1}{2x+9}
asymptotes of f(x)=(x^2-49)/x
asymptotes\:f(x)=\frac{x^{2}-49}{x}
inverse of f(x)=-1/2
inverse\:f(x)=-\frac{1}{2}
inverse of f(x)=3x-7
inverse\:f(x)=3x-7
asymptotes of (x^2+x-2)/(3x^2-4x-20)
asymptotes\:\frac{x^{2}+x-2}{3x^{2}-4x-20}
critical f(x)=(x^3)/(x+1)
critical\:f(x)=\frac{x^{3}}{x+1}
distance (3,5.568),(0,0)
distance\:(3,5.568),(0,0)
domain of f(x)=5x^2+1
domain\:f(x)=5x^{2}+1
symmetry x=-4(y-7)^2+7
symmetry\:x=-4(y-7)^{2}+7
intercepts of y=-x^2+8x-16
intercepts\:y=-x^{2}+8x-16
asymptotes of f(x)=((x^2+1))/(x+1)
asymptotes\:f(x)=\frac{(x^{2}+1)}{x+1}
domain of 4x^2-x-3
domain\:4x^{2}-x-3
domain of f(x)=65x-10
domain\:f(x)=65x-10
domain of f(x)=(9+4x^2)/(2x^2)
domain\:f(x)=\frac{9+4x^{2}}{2x^{2}}
range of y=cos(4x)+1
range\:y=\cos(4x)+1
inverse of f(x)=6^x+3
inverse\:f(x)=6^{x}+3
parity f(x)=2-2^{(atan((x-1)^2))}
parity\:f(x)=2-2^{(a\tan((x-1)^{2}))}
inverse of f(x)=(1+2^x)/(4-2^x)
inverse\:f(x)=\frac{1+2^{x}}{4-2^{x}}
f(x)= x/(x-2)
f(x)=\frac{x}{x-2}
midpoint (-7/3 , 1/3),(-5/3 ,-7/3)
midpoint\:(-\frac{7}{3},\frac{1}{3}),(-\frac{5}{3},-\frac{7}{3})
domain of sqrt(5+x)
domain\:\sqrt{5+x}
intercepts of f(x)=(2x+3)/(x+4)
intercepts\:f(x)=\frac{2x+3}{x+4}
distance (-1,-9),(6,8)
distance\:(-1,-9),(6,8)
domain of f(x)=log_{5}(8-2x)
domain\:f(x)=\log_{5}(8-2x)
extreme f(x)=x^3-6x^2-135x
extreme\:f(x)=x^{3}-6x^{2}-135x
domain of f(x)= 5/(x^2-36)
domain\:f(x)=\frac{5}{x^{2}-36}
intercepts of f(x)=x^2-25
intercepts\:f(x)=x^{2}-25
critical f(x)=x^{5/2}-5x^2
critical\:f(x)=x^{\frac{5}{2}}-5x^{2}
extreme f(x)=x^3-x^2-2x
extreme\:f(x)=x^{3}-x^{2}-2x
perpendicular f= 8/5
perpendicular\:f=\frac{8}{5}
inverse of f(x)= x/(x-2)
inverse\:f(x)=\frac{x}{x-2}
domain of f(x)=15-(x/(8.345))
domain\:f(x)=15-(\frac{x}{8.345})
domain of f(x)=x^2-12x+36
domain\:f(x)=x^{2}-12x+36
inverse of f(x)=9x+4
inverse\:f(x)=9x+4
range of-2(1/3)^x
range\:-2(\frac{1}{3})^{x}
domain of f(x)=(6x)/(x^2+5)
domain\:f(x)=\frac{6x}{x^{2}+5}
inflection f(x)=x^5-5x^4+15x+4
inflection\:f(x)=x^{5}-5x^{4}+15x+4
domain of ln(4-t^2)
domain\:\ln(4-t^{2})
inverse of f(x)=((x+11))/(x-8)
inverse\:f(x)=\frac{(x+11)}{x-8}
inverse of f(x)=(x-2)^2+4
inverse\:f(x)=(x-2)^{2}+4
inverse of f(x)=-2/(x-3)
inverse\:f(x)=-\frac{2}{x-3}
critical f(x)=(x^3)/3-81x
critical\:f(x)=\frac{x^{3}}{3}-81x
midpoint (2,4),(-3,-9)
midpoint\:(2,4),(-3,-9)
shift f(x)=sin(2x)
shift\:f(x)=\sin(2x)
domain of (2x-5)/(7x+4)
domain\:\frac{2x-5}{7x+4}
range of (x-8)/(x+7)
range\:\frac{x-8}{x+7}
domain of log_{3}(x)
domain\:\log_{3}(x)
critical y=x^3-12x
critical\:y=x^{3}-12x
domain of 3x-5
domain\:3x-5
distance (11,-2),(2,-3)
distance\:(11,-2),(2,-3)
range of f(x)=2x^2-5x+1
range\:f(x)=2x^{2}-5x+1
inverse of f(x)=5-2/3 x
inverse\:f(x)=5-\frac{2}{3}x
extreme f(x)=9x^2-2x^3
extreme\:f(x)=9x^{2}-2x^{3}
critical \sqrt[3]{x}(x+4)
critical\:\sqrt[3]{x}(x+4)
inverse of f(x)=e^{arctan(x)}
inverse\:f(x)=e^{\arctan(x)}
parallel y=2x+3,(3,1)
parallel\:y=2x+3,(3,1)
domain of (sqrt(x-3))^2
domain\:(\sqrt{x-3})^{2}
inverse of f(x)=((2x-3))/(x+1)
inverse\:f(x)=\frac{(2x-3)}{x+1}
periodicity of sin(2)(x-pi/2)+1
periodicity\:\sin(2)(x-\frac{π}{2})+1
domain of (7e^x)/(7+e^x)
domain\:\frac{7e^{x}}{7+e^{x}}
inverse of 25h^2+28h-56
inverse\:25h^{2}+28h-56
intercepts of r(x)=(x(x-18)^2)/((x-18))
intercepts\:r(x)=\frac{x(x-18)^{2}}{(x-18)}
line (0,4),(4,0)
line\:(0,4),(4,0)
asymptotes of f(x)=(x^2+5x-36)/(x^2-16)
asymptotes\:f(x)=\frac{x^{2}+5x-36}{x^{2}-16}
asymptotes of ((x-3)(x+1))/(x+2)
asymptotes\:\frac{(x-3)(x+1)}{x+2}
domain of f(x)=7x^3
domain\:f(x)=7x^{3}
symmetry (x+1)/(x^2+x+1)
symmetry\:\frac{x+1}{x^{2}+x+1}
f(x)=x^2+4x-5
f(x)=x^{2}+4x-5
asymptotes of g(x)=log_{2}(x+5)
asymptotes\:g(x)=\log_{2}(x+5)
f(x)=log_{4}(x)
f(x)=\log_{4}(x)
inverse of y=(x-3)^2
inverse\:y=(x-3)^{2}
range of xsqrt(x-9)
range\:x\sqrt{x-9}
1
..
261
262
263
264
265
..
1324