Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=50e^{0.1x}
inverse\:f(x)=50e^{0.1x}
domain of (x-1)/(x^2-x-6)
domain\:\frac{x-1}{x^{2}-x-6}
asymptotes of 2^{x-4}
asymptotes\:2^{x-4}
f(a)=sqrt(a)
f(a)=\sqrt{a}
range of f(x)=x^2-2x-1
range\:f(x)=x^{2}-2x-1
inflection f(x)=x^4-4x^3+7
inflection\:f(x)=x^{4}-4x^{3}+7
critical-4cos(3x+pi/6)+1
critical\:-4\cos(3x+\frac{π}{6})+1
domain of (-2)/(sqrt(x^2-5x+6))
domain\:\frac{-2}{\sqrt{x^{2}-5x+6}}
domain of 2x^2+x-6
domain\:2x^{2}+x-6
extreme f(x)=-(x+1)(x-1)^2
extreme\:f(x)=-(x+1)(x-1)^{2}
inverse of f(x)=\sqrt[4]{4-4x},x<= 1
inverse\:f(x)=\sqrt[4]{4-4x},x\le\:1
intercepts of f(x)=2x-sqrt(x^2+1)
intercepts\:f(x)=2x-\sqrt{x^{2}+1}
slope of y=4x-10
slope\:y=4x-10
domain of f(x)=3sqrt(7-x)
domain\:f(x)=3\sqrt{7-x}
domain of (sqrt(x+4))/(x-5)
domain\:\frac{\sqrt{x+4}}{x-5}
critical f(x)=5(1-x)e^{-x}
critical\:f(x)=5(1-x)e^{-x}
inverse of h(x)=-2x
inverse\:h(x)=-2x
domain of f(x)= 7/(7/x)
domain\:f(x)=\frac{7}{\frac{7}{x}}
range of x/(x+3)
range\:\frac{x}{x+3}
range of f(x)= 2/(x+1)*sqrt(1-x)
range\:f(x)=\frac{2}{x+1}\cdot\:\sqrt{1-x}
asymptotes of (2x^2-3x-9)/x
asymptotes\:\frac{2x^{2}-3x-9}{x}
m<6
m<6
inverse of f(x)=ln(x+7)-ln(3)+1
inverse\:f(x)=\ln(x+7)-\ln(3)+1
inverse of f(x)=(x+1)(x-2)
inverse\:f(x)=(x+1)(x-2)
inverse of x^3-12
inverse\:x^{3}-12
domain of f(x)=((x+2))/((x-3))
domain\:f(x)=\frac{(x+2)}{(x-3)}
perpendicular 2x+3y=5
perpendicular\:2x+3y=5
slope of 9y=8x-4
slope\:9y=8x-4
range of f(x)=-4x^2-12x
range\:f(x)=-4x^{2}-12x
range of y=9x^2
range\:y=9x^{2}
symmetry-8x^2-12x+1
symmetry\:-8x^{2}-12x+1
domain of f(x)= x/(3x-1)
domain\:f(x)=\frac{x}{3x-1}
domain of f(x)=sqrt((4+x)(4-x)(x+2))
domain\:f(x)=\sqrt{(4+x)(4-x)(x+2)}
parallel 15x+3y=-135
parallel\:15x+3y=-135
symmetry 4y=7x+4
symmetry\:4y=7x+4
periodicity of f(x)=tan(2x)
periodicity\:f(x)=\tan(2x)
extreme f(x)=x^3-2x^2
extreme\:f(x)=x^{3}-2x^{2}
inverse of f(x)=3-x^2
inverse\:f(x)=3-x^{2}
domain of f(x)=5x+6
domain\:f(x)=5x+6
range of 2x^2-1
range\:2x^{2}-1
domain of 1/(-x+5)
domain\:\frac{1}{-x+5}
inverse of f(x)= 4/(x+2)+1
inverse\:f(x)=\frac{4}{x+2}+1
intercepts of f(x)=(x-3)^2-1
intercepts\:f(x)=(x-3)^{2}-1
domain of f(x)=log_{10}(x-10)
domain\:f(x)=\log_{10}(x-10)
inverse of F(X)=2X+1
inverse\:F(X)=2X+1
midpoint ((2pi)/6 ,0),((7pi)/(12),0)
midpoint\:(\frac{2π}{6},0),(\frac{7π}{12},0)
extreme f(x)=-x^3-48x
extreme\:f(x)=-x^{3}-48x
asymptotes of f(x)=(3x^2+1)/(x+1)
asymptotes\:f(x)=\frac{3x^{2}+1}{x+1}
domain of f(x)=(2/3)^x
domain\:f(x)=(\frac{2}{3})^{x}
domain of f(x)= x/(x+8)
domain\:f(x)=\frac{x}{x+8}
domain of f(x)=sqrt(1+x)-sqrt(1-x)
domain\:f(x)=\sqrt{1+x}-\sqrt{1-x}
line m= 9/7 ,(2,5)
line\:m=\frac{9}{7},(2,5)
monotone f(x)=x^2-x+3
monotone\:f(x)=x^{2}-x+3
inverse of 1/(2x-1)
inverse\:\frac{1}{2x-1}
inverse of f(x)={x^3+1,x<= 0}
inverse\:f(x)=\left\{x^{3}+1,x\le\:0\right\}
midpoint (1,-5),(-7,1)
midpoint\:(1,-5),(-7,1)
extreme f(x)=-x^3+5x+9
extreme\:f(x)=-x^{3}+5x+9
domain of f(x)=(sqrt(5+x))/(9-x)
domain\:f(x)=\frac{\sqrt{5+x}}{9-x}
intercepts of f(x)=((-x^4)/4)+x^2-1
intercepts\:f(x)=(\frac{-x^{4}}{4})+x^{2}-1
distance (4,5),(3,2)
distance\:(4,5),(3,2)
intercepts of f(x)=(5x)/(x-2)
intercepts\:f(x)=\frac{5x}{x-2}
extreme f(x)=(x+3)/(3-x)
extreme\:f(x)=\frac{x+3}{3-x}
intercepts of f(x)=2x^2+4x+3
intercepts\:f(x)=2x^{2}+4x+3
asymptotes of y=3^x
asymptotes\:y=3^{x}
domain of f(x)= 1/10 x-1/5
domain\:f(x)=\frac{1}{10}x-\frac{1}{5}
inverse of f(x)=9x^2-4
inverse\:f(x)=9x^{2}-4
domain of x^2+1/x-1
domain\:x^{2}+\frac{1}{x}-1
range of 3-sqrt(x+1)
range\:3-\sqrt{x+1}
inverse of f(x)=9x^7+7
inverse\:f(x)=9x^{7}+7
parity f(x)=1+x^3
parity\:f(x)=1+x^{3}
inverse of f(x)=((3x+2))/(2x-1)
inverse\:f(x)=\frac{(3x+2)}{2x-1}
slope of f(x)=(5x)/2+3
slope\:f(x)=\frac{5x}{2}+3
slope of y=6x-2
slope\:y=6x-2
parity f(x)=sin(((2n-1))/2 pix)
parity\:f(x)=\sin(\frac{(2n-1)}{2}πx)
inverse of f(x)=log_{3}(x-2)
inverse\:f(x)=\log_{3}(x-2)
asymptotes of f(x)=(-3x^2)/(x^2+4x-21)
asymptotes\:f(x)=\frac{-3x^{2}}{x^{2}+4x-21}
asymptotes of 2x^2-3x-9
asymptotes\:2x^{2}-3x-9
inverse of f(x)=\sqrt[3]{x}+2
inverse\:f(x)=\sqrt[3]{x}+2
f(θ)=cos(2θ)
f(θ)=\cos(2θ)
asymptotes of f(x)=(6-5x)/(3x-7)
asymptotes\:f(x)=\frac{6-5x}{3x-7}
inverse of f(x)=-x/4
inverse\:f(x)=-\frac{x}{4}
domain of f(x)= 8/(6/x-1)
domain\:f(x)=\frac{8}{\frac{6}{x}-1}
intercepts of f(x)=5x^2-10x
intercepts\:f(x)=5x^{2}-10x
domain of f(x)=sqrt(5x+4)
domain\:f(x)=\sqrt{5x+4}
domain of y=(5x-2)/(2x^2+3x-20)
domain\:y=\frac{5x-2}{2x^{2}+3x-20}
inflection (x^3+x^2)^{1/3}
inflection\:(x^{3}+x^{2})^{\frac{1}{3}}
domain of f(x)=2-log_{3}(4-x)
domain\:f(x)=2-\log_{3}(4-x)
domain of f(x)= 1/3 x-5
domain\:f(x)=\frac{1}{3}x-5
asymptotes of 3/(x+2)-sqrt(x-3)
asymptotes\:\frac{3}{x+2}-\sqrt{x-3}
domain of f(x)=xsqrt(x)-8sqrt(x)
domain\:f(x)=x\sqrt{x}-8\sqrt{x}
slope of (-\sqrt[5]{3})/(sqrt(7))
slope\:\frac{-\sqrt[5]{3}}{\sqrt{7}}
domain of (-5)/((3-x)^2)
domain\:\frac{-5}{(3-x)^{2}}
inverse of f(x)= 4/(5+x)
inverse\:f(x)=\frac{4}{5+x}
inverse of f(x)=x^{1/3}+1
inverse\:f(x)=x^{\frac{1}{3}}+1
inverse of f(x)= 1/(x^3)+3
inverse\:f(x)=\frac{1}{x^{3}}+3
periodicity of 7cos(8(x+pi/6))
periodicity\:7\cos(8(x+\frac{π}{6}))
inverse of log_{1/3}((5+x)/x)
inverse\:\log_{\frac{1}{3}}(\frac{5+x}{x})
range of f(x)=sqrt(3x)
range\:f(x)=\sqrt{3x}
domain of f(x)=(-4)/(x^2-1)
domain\:f(x)=\frac{-4}{x^{2}-1}
perpendicular y=3x+1,(-3,6)
perpendicular\:y=3x+1,(-3,6)
1
..
271
272
273
274
275
..
1324