Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of-(13e^{1/x}/(x^2))
\frac{d}{dx}(-\frac{13e^{\frac{1}{x}}}{x^{2}})
limit as x approaches 14 of sqrt(x^2-9)
\lim\:_{x\to\:14}(\sqrt{x^{2}-9})
area y= 1/x ,y=x
area\:y=\frac{1}{x},y=x
integral of 4x^2-x^4
\int\:4x^{2}-x^{4}dx
limit as x approaches-1+of x+2
\lim\:_{x\to\:-1+}(x+2)
(dx)/(dt)=8(x^2+1),x(pi/4)=1
\frac{dx}{dt}=8(x^{2}+1),x(\frac{π}{4})=1
derivative of (-1/((x-1)^2))
\frac{d}{dx}(\frac{-1}{(x-1)^{2}})
(dy)/(dt)-2ty=12t^2e^{t^2}
\frac{dy}{dt}-2ty=12t^{2}e^{t^{2}}
y^'=(2y^2)+xy^2
y^{\prime\:}=(2y^{2})+xy^{2}
f^'(x)=2x-3/(x^4)
f^{\prime\:}(x)=2x-\frac{3}{x^{4}}
tangent of f(x)= 2/(3x+1)
tangent\:f(x)=\frac{2}{3x+1}
integral from 0 to 1 of 7e^{-7sqrt(x)}
\int\:_{0}^{1}7e^{-7\sqrt{x}}dx
limit as x approaches 5 of (x+2)/(x-4)
\lim\:_{x\to\:5}(\frac{x+2}{x-4})
integral of 0.1t
\int\:0.1tdt
(\partial)/(\partial x)(x*ln(y))
\frac{\partial\:}{\partial\:x}(x\cdot\:\ln(y))
derivative of x^2+sqrt(x^2+1)
\frac{d}{dx}(x^{2}+\sqrt{x^{2}+1})
derivative of y=2e^{-4x^2}
derivative\:y=2e^{-4x^{2}}
limit as x approaches 0 of (8^x-5^x)/x
\lim\:_{x\to\:0}(\frac{8^{x}-5^{x}}{x})
integral of (x^3)/(x^2+3x+2)
\int\:\frac{x^{3}}{x^{2}+3x+2}dx
integral from 0 to pi/(42) of tan(14x)
\int\:_{0}^{\frac{π}{42}}\tan(14x)dx
integral of x/(\sqrt[4]{x+6)}
\int\:\frac{x}{\sqrt[4]{x+6}}dx
tangent of (x^2)/(x-10),\at x=11
tangent\:\frac{x^{2}}{x-10},\at\:x=11
derivative of f(x)=xe^{3x}
derivative\:f(x)=xe^{3x}
integral of cos((npix)/l)
\int\:\cos(\frac{nπx}{l})dx
limit as x approaches 1 of 4-x
\lim\:_{x\to\:1}(4-x)
integral of 4tan^3(x)
\int\:4\tan^{3}(x)dx
y^'+6/5 y=1-1/6 t
y^{\prime\:}+\frac{6}{5}y=1-\frac{1}{6}t
derivative of f(x)=(x^3-8)^{2/3}
derivative\:f(x)=(x^{3}-8)^{\frac{2}{3}}
y^{''}+81y=cos(8t)
y^{\prime\:\prime\:}+81y=\cos(8t)
derivative of e^3+2
derivative\:e^{3}+2
integral from 1 to 4 of 1/(x^2)-8/(x^3)
\int\:_{1}^{4}\frac{1}{x^{2}}-\frac{8}{x^{3}}dx
x^'=x^3
x^{\prime\:}=x^{3}
maclaurin 1/(1+cos^2(x))
maclaurin\:\frac{1}{1+\cos^{2}(x)}
integral of 4x^3+24x-1
\int\:4x^{3}+24x-1dx
limit as x approaches 3 of (3-|x|)/(x+3)
\lim\:_{x\to\:3}(\frac{3-\left|x\right|}{x+3})
y^{''}+2ky^'+ak^2y=0
y^{\prime\:\prime\:}+2ky^{\prime\:}+ak^{2}y=0
inverse oflaplace (s+3)/(s^2+4s+8)
inverselaplace\:\frac{s+3}{s^{2}+4s+8}
limit as x approaches-infinity of x/x
\lim\:_{x\to\:-\infty\:}(\frac{x}{x})
(\partial)/(\partial x)(-(2x)/((1+x^2)^2))
\frac{\partial\:}{\partial\:x}(-\frac{2x}{(1+x^{2})^{2}})
xy^'+2y=(sin(x))/x
xy^{\prime\:}+2y=\frac{\sin(x)}{x}
y^'=7xe^y
y^{\prime\:}=7xe^{y}
(1+x^2)y+xy^'+ax=0
(1+x^{2})y+xy^{\prime\:}+ax=0
limit as k approaches 0 of (x^2k+3xk^2+k^3)/(2xk+5k^2)
\lim\:_{k\to\:0}(\frac{x^{2}k+3xk^{2}+k^{3}}{2xk+5k^{2}})
derivative of (1+x/(1+e^x))
\frac{d}{dx}(\frac{1+x}{1+e^{x}})
x^2y^{''}+9xy^'+16y=0
x^{2}y^{\prime\:\prime\:}+9xy^{\prime\:}+16y=0
f(x)=sin(5x)
f(x)=\sin(5x)
limit as x approaches-3 of-x^2+6x-2
\lim\:_{x\to\:-3}(-x^{2}+6x-2)
integral of 54.0595e^{sqrt(x)}x
\int\:54.0595e^{\sqrt{x}}xdx
(\partial)/(\partial x)(in(x+y)/(x-y))
\frac{\partial\:}{\partial\:x}(in\frac{x+y}{x-y})
derivative of (x^2/((x+2i)^2))
\frac{d}{dx}(\frac{x^{2}}{(x+2i)^{2}})
v'=(8*9.8+3.1v^2)/8
v\prime\:=\frac{8\cdot\:9.8+3.1v^{2}}{8}
limit as x approaches 3 of (x^2+1)/(10)
\lim\:_{x\to\:3}(\frac{x^{2}+1}{10})
y^{''}-5y^'=8t
y^{\prime\:\prime\:}-5y^{\prime\:}=8t
y^'=y,y(0)=1
y^{\prime\:}=y,y(0)=1
integral of ((2x+1))/(sqrt(x^2-1))
\int\:\frac{(2x+1)}{\sqrt{x^{2}-1}}dx
derivative of 2e^x(cos(x)-sin(x))
derivative\:2e^{x}(\cos(x)-\sin(x))
integral from-2 to 3 of (x^3-x^2-6x)
\int\:_{-2}^{3}(x^{3}-x^{2}-6x)dx
d/(dt)(arcsin(t))
\frac{d}{dt}(\arcsin(t))
d/(dt)(cos(t)+sin(t))
\frac{d}{dt}(\cos(t)+\sin(t))
area y=x^2-19,y=18x
area\:y=x^{2}-19,y=18x
y^'+2y=2x
y^{\prime\:}+2y=2x
(\partial)/(\partial x)((x^2)/((x+y)^2))
\frac{\partial\:}{\partial\:x}(\frac{x^{2}}{(x+y)^{2}})
integral of tan^5(x/(14))
\int\:\tan^{5}(\frac{x}{14})dx
simplify sqrt(xy)
simplify\:\sqrt{xy}
derivative of (-2x-y)/(x+2y)
derivative\:\frac{-2x-y}{x+2y}
(d^4)/(dx^4)(sin(x^2))
\frac{d^{4}}{dx^{4}}(\sin(x^{2}))
integral of (x-1/x)^2*x
\int\:(x-\frac{1}{x})^{2}\cdot\:xdx
integral of (sinh(x))/(cosh(x))
\int\:\frac{\sinh(x)}{\cosh(x)}dx
derivative of e^{cosh(8x})
\frac{d}{dx}(e^{\cosh(8x)})
d/(dy)(4y)
\frac{d}{dy}(4y)
limit as x approaches 0 of 5/(x+1)+4x
\lim\:_{x\to\:0}(\frac{5}{x+1}+4x)
integral of (x^2+4x+8)/(x-2)
\int\:\frac{x^{2}+4x+8}{x-2}dx
derivative of-ln(x^2)
\frac{d}{dx}(-\ln(x^{2}))
derivative of x^4-8x^2+a
\frac{d}{dx}(x^{4}-8x^{2}+a)
integral of-x(\sqrt[3]{2x^2+4})
\int\:-x(\sqrt[3]{2x^{2}+4})dx
(\partial)/(\partial x)(e)
\frac{\partial\:}{\partial\:x}(e)
limit as x approaches-19+of k(x)
\lim\:_{x\to\:-19+}(k(x))
derivative of 4sin(pi*x)
derivative\:4\sin(π\cdot\:x)
integral from 0 to 1 of x^{-2}
\int\:_{0}^{1}x^{-2}dx
4(dy)/(dx)+36y=9
4\frac{dy}{dx}+36y=9
derivative of ((6x^2-11x+2))/((3x-1))
derivative\:\frac{(6x^{2}-11x+2)}{(3x-1)}
integral of (ln^2(x))
\int\:(\ln^{2}(x))dx
derivative of cos(y*(dy)/(dx))
\frac{d}{dx}(\cos(y)\cdot\:\frac{dy}{dx})
sum from n=2 to infinity of 1/((n-1)^2)
\sum\:_{n=2}^{\infty\:}\frac{1}{(n-1)^{2}}
maclaurin x/(e^x)
maclaurin\:\frac{x}{e^{x}}
(dy)/(dx)=e^{5x+6y}
\frac{dy}{dx}=e^{5x+6y}
taylor 1+e^{2x}
taylor\:1+e^{2x}
integral of sec^2(x)-5
\int\:\sec^{2}(x)-5dx
(dy)/(dt)=2*sqrt(y)
\frac{dy}{dt}=2\cdot\:\sqrt{y}
slope of x^2-5
slope\:x^{2}-5
limit as x approaches infinity of-3e^x
\lim\:_{x\to\:\infty\:}(-3e^{x})
derivative of-y/(y^2+x^2)
\frac{d}{dx}(-\frac{y}{y^{2}+x^{2}})
derivative of cos^4(x-2x^2)
\frac{d}{dx}(\cos^{4}(x)-2x^{2})
inverse oflaplace 1/(s+11)
inverselaplace\:\frac{1}{s+11}
(dy)/(dt)+ty=y
\frac{dy}{dt}+ty=y
slope ofintercept (-3,1),(2,-14)
slopeintercept\:(-3,1),(2,-14)
(\partial)/(\partial y)(2xy-sec^2(x))
\frac{\partial\:}{\partial\:y}(2xy-\sec^{2}(x))
simplify-2
simplify\:-2
tangent of 2x^2+x
tangent\:2x^{2}+x
integral of x^2-1/(x^2)
\int\:x^{2}-\frac{1}{x^{2}}dx
1
..
1004
1005
1006
1007
1008
..
2459