Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 1/(x(ln(x))^3)
\int\:\frac{1}{x(\ln(x))^{3}}dx
y^'=y(y+1)x
y^{\prime\:}=y(y+1)x
integral of (1+ln(x))/(xln(x))
\int\:\frac{1+\ln(x)}{x\ln(x)}dx
derivative of 3sin^2(xcos(2x))
\frac{d}{dx}(3\sin^{2}(x)\cos(2x))
(\partial)/(\partial x)((x/(x-y))^{1/3})
\frac{\partial\:}{\partial\:x}((\frac{x}{x-y})^{\frac{1}{3}})
(\partial)/(\partial x)((x-y)/((x+y)^2))
\frac{\partial\:}{\partial\:x}(\frac{x-y}{(x+y)^{2}})
derivative of (x^2-10x/((x-5)^2))
\frac{d}{dx}(\frac{x^{2}-10x}{(x-5)^{2}})
derivative of f(x)=(2x)/(x^2+1)
derivative\:f(x)=\frac{2x}{x^{2}+1}
derivative of 3x^2-2x
derivative\:3x^{2}-2x
derivative of 7(4^x)
derivative\:7(4^{x})
limit as x approaches-5-of 1/(x^2-25)
\lim\:_{x\to\:-5-}(\frac{1}{x^{2}-25})
d/(dt)((5t)/(1+2t^2))
\frac{d}{dt}(\frac{5t}{1+2t^{2}})
(dy)/(dt)= 1/((y+1)(t-2)),y(0)=0
\frac{dy}{dt}=\frac{1}{(y+1)(t-2)},y(0)=0
integral of cos(5x)cos(10x)
\int\:\cos(5x)\cos(10x)dx
inverse oflaplace (e^{-s})/(((s-3)(s+1)))
inverselaplace\:\frac{e^{-s}}{((s-3)(s+1))}
derivative of 4x^{(-1/8})
\frac{d}{dx}(4x^{\frac{-1}{8}})
(\partial)/(\partial x)(5x^{0.75}y^{0.25})
\frac{\partial\:}{\partial\:x}(5x^{0.75}y^{0.25})
integral of ((ln(x))^{24})/x
\int\:\frac{(\ln(x))^{24}}{x}dx
f(x)=ln(x^{ln(x)})
f(x)=\ln(x^{\ln(x)})
integral from-infinity to-1 of e^{-20t}
\int\:_{-\infty\:}^{-1}e^{-20t}dt
derivative of \sqrt[3]{t^2}
derivative\:\sqrt[3]{t^{2}}
integral of x^2ln(x
\int\:x^{2}\ln(d)xdx
derivative of x*e^{-sin(x}-x)
\frac{d}{dx}(x\cdot\:e^{-\sin(x)}-x)
derivative of (x^2-3/(x-2))
\frac{d}{dx}(\frac{x^{2}-3}{x-2})
derivative of (2x)/(1-tan(x))
derivative\:\frac{2x}{1-\tan(x)}
xy^'+y=x^2-2x+1
xy^{\prime\:}+y=x^{2}-2x+1
derivative of sqrt(1+xe^{-2x)}
derivative\:\sqrt{1+xe^{-2x}}
derivative of 7(x-5)^{2/3}
derivative\:7(x-5)^{\frac{2}{3}}
integral from 1/2 to 7 of 6xln(2x)
\int\:_{\frac{1}{2}}^{7}6x\ln(2x)dx
integral from-infinity to-1 of e^{-2t}
\int\:_{-\infty\:}^{-1}e^{-2t}dt
d/(dy)(ln(x+y))
\frac{d}{dy}(\ln(x+y))
derivative of f(x)=2^{40}
derivative\:f(x)=2^{40}
area sin(x),cos(x),[-pi,pi]
area\:\sin(x),\cos(x),[-π,π]
integral of (20s+20)/((s^2+1)(s-1)^3)
\int\:\frac{20s+20}{(s^{2}+1)(s-1)^{3}}ds
derivative of (3-4x^{4/3})
\frac{d}{dx}((3-4x)^{\frac{4}{3}})
tangent of f(x)=[(x-2)^2-x]^2,\at x=3
tangent\:f(x)=[(x-2)^{2}-x]^{2},\at\:x=3
area 4-x^2,y=0
area\:4-x^{2},y=0
integral from 3 to 6 of 10000e^{0.02t}
\int\:_{3}^{6}10000e^{0.02t}dt
(\partial)/(\partial y)(sqrt(2x^2+y^2))
\frac{\partial\:}{\partial\:y}(\sqrt{2x^{2}+y^{2}})
limit as x approaches+2-of x/(x^2-4)
\lim\:_{x\to\:+2-}(\frac{x}{x^{2}-4})
integral of (1+x^2)*sqrt(1+64x^2)
\int\:(1+x^{2})\cdot\:\sqrt{1+64x^{2}}dx
tangent of f(x)=4sec(x),\at x= pi/6
tangent\:f(x)=4\sec(x),\at\:x=\frac{π}{6}
(2y^2x+3x)dx+(2x^2y)dy=0
(2y^{2}x+3x)dx+(2x^{2}y)dy=0
(\partial}{\partial v}(\frac{v^2)/u)
\frac{\partial\:}{\partial\:v}(\frac{v^{2}}{u})
derivative of sqrt(2-x)-sqrt(y+1)
\frac{d}{dx}(\sqrt{2-x}-\sqrt{y+1})
limit as x approaches 1 of 1+x^2
\lim\:_{x\to\:1}(1+x^{2})
derivative of 100
\frac{d}{dx}(100)
limit as x approaches 6 of (6/x-1)/(x-6)
\lim\:_{x\to\:6}(\frac{\frac{6}{x}-1}{x-6})
derivative of x/pi
\frac{d}{dx}(\frac{x}{π})
implicit (dy)/(dx), x/y =0
implicit\:\frac{dy}{dx},\frac{x}{y}=0
integral from 0 to 4 of x^4
\int\:_{0}^{4}x^{4}dx
area (4/x),(16x),(1/4 x)
area\:(\frac{4}{x}),(16x),(\frac{1}{4}x)
limit as x approaches 2+of 2/(x^2-4)
\lim\:_{x\to\:2+}(\frac{2}{x^{2}-4})
integral of (3^{5x}-1)/(3^{5x)}
\int\:\frac{3^{5x}-1}{3^{5x}}dx
derivative of 3(5e^{5x}cos(6x)-6e^{5x}sin(6x))
derivative\:3(5e^{5x}\cos(6x)-6e^{5x}\sin(6x))
sum from n=0 to infinity of (-1/6)^n
\sum\:_{n=0}^{\infty\:}(-\frac{1}{6})^{n}
integral of 1/(x^5sqrt(4x^2-1))
\int\:\frac{1}{x^{5}\sqrt{4x^{2}-1}}dx
integral of x/(sin^2(x))
\int\:\frac{x}{\sin^{2}(x)}dx
derivative of arcsin(x)
\frac{d}{dx}(\arcsin(x))
taylor 1-e^x
taylor\:1-e^{x}
(\partial)/(\partial x)((2xy^2)/(4+x^2y^2))
\frac{\partial\:}{\partial\:x}(\frac{2xy^{2}}{4+x^{2}y^{2}})
limit as x approaches 0+of (e^{-1/x})/x
\lim\:_{x\to\:0+}(\frac{e^{-\frac{1}{x}}}{x})
limit as x approaches-2 of |x|
\lim\:_{x\to\:-2}(\left|x\right|)
tangent of f(x)= 7/(1-x),\at x=-3
tangent\:f(x)=\frac{7}{1-x},\at\:x=-3
derivative of 8z^2e^z
derivative\:8z^{2}e^{z}
(d^2)/(dx^2)((x^2+1)/(x^2-4))
\frac{d^{2}}{dx^{2}}(\frac{x^{2}+1}{x^{2}-4})
integral of 7/(x-2)
\int\:\frac{7}{x-2}dx
tangent of e^{x^3}
tangent\:e^{x^{3}}
(\partial)/(\partial x)(e^{xyz^3})
\frac{\partial\:}{\partial\:x}(e^{xyz^{3}})
integral of tln(t+5)
\int\:t\ln(t+5)dt
integral of x/(1+2x^2)
\int\:\frac{x}{1+2x^{2}}dx
derivative of x^5+3x^2+1
\frac{d}{dx}(x^{5}+3x^{2}+1)
area 10x,x^2-11
area\:10x,x^{2}-11
derivative of 1-e^{-e^x}
\frac{d}{dx}(1-e^{-e^{x}})
y^'-8y=cos(x)
y^{\prime\:}-8y=\cos(x)
integral of x/(x^{2+1)}
\int\:\frac{x}{x^{2+1}}dx
derivative of acos(x+bsin(x))
\frac{d}{dx}(a\cos(x)+b\sin(x))
integral of sqrt(16-x^2)
\int\:\sqrt{16-x^{2}}dx
integral of (cos(4x))^2
\int\:(\cos(4x))^{2}dx
area y=x^3,y=0,x=1,x=2
area\:y=x^{3},y=0,x=1,x=2
integral from 0 to 19/6 of pi(19/6-x)^2
\int\:_{0}^{\frac{19}{6}}π(\frac{19}{6}-x)^{2}dx
tangent of f(x)=e^{8x}cos(pix),\at x=0
tangent\:f(x)=e^{8x}\cos(πx),\at\:x=0
(\partial)/(\partial z)(rcos(t))
\frac{\partial\:}{\partial\:z}(r\cos(t))
laplacetransform 1-2e^{-2t}
laplacetransform\:1-2e^{-2t}
integral of e^{4x}sqrt(1+e^{2x)}
\int\:e^{4x}\sqrt{1+e^{2x}}dx
limit as x approaches 3 of 2x^2+4x+1
\lim\:_{x\to\:3}(2x^{2}+4x+1)
y^{''}-2y^'+5y=25x^2+12
y^{\prime\:\prime\:}-2y^{\prime\:}+5y=25x^{2}+12
integral from 0 to 2 of (3t)/((3-t)^2)
\int\:_{0}^{2}\frac{3t}{(3-t)^{2}}dt
tangent of y=3x^2+5x,(-3,-13)
tangent\:y=3x^{2}+5x,(-3,-13)
limit as x approaches 3 of e^x
\lim\:_{x\to\:3}(e^{x})
limit as x approaches infinity of tan(x)
\lim\:_{x\to\:\infty\:}(\tan(x))
derivative of ln(sqrt(x^2+3))
\frac{d}{dx}(\ln(\sqrt{x^{2}+3}))
derivative of 3^{(x^4+1^3})
\frac{d}{dx}(3^{(x^{4}+1)^{3}})
integral of sin(5x)cos(4x)
\int\:\sin(5x)\cos(4x)dx
integral of sec^2(x)tan^7(x)
\int\:\sec^{2}(x)\tan^{7}(x)dx
integral of (3x^2-5x+1)/((x-4))
\int\:\frac{3x^{2}-5x+1}{(x-4)}dx
maclaurin e^{x^5}
maclaurin\:e^{x^{5}}
derivative of f(x)=x^3-3x^2
derivative\:f(x)=x^{3}-3x^{2}
(d^2)/(dx^2)(sqrt(x)+\sqrt[3]{x})
\frac{d^{2}}{dx^{2}}(\sqrt{x}+\sqrt[3]{x})
integral of (x^2In^3(1+x^3))/(1+x^3)
\int\:\frac{x^{2}In^{3}(1+x^{3})}{1+x^{3}}dx
1
..
1137
1138
1139
1140
1141
..
2459