Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial}{\partial x}(\frac{(2pi*l^2))/x)
\frac{\partial\:}{\partial\:x}(\frac{(2π\cdot\:l^{2})}{x})
integral from 0 to 16 of sqrt(x)
\int\:_{0}^{16}\sqrt{x}dx
integral from 0 to 4 of 4y^2-(y^4)/4
\int\:_{0}^{4}4y^{2}-\frac{y^{4}}{4}dy
limit as x approaches a of f(x)+g(x)
\lim\:_{x\to\:a}(f(x)+g(x))
laplacetransform f(t)=cos(2t)
laplacetransform\:f(t)=\cos(2t)
xy(dy)/(dx)=1
xy\frac{dy}{dx}=1
integral of+x/(x^2+1)
\int\:+\frac{x}{x^{2}+1}dx
integral of 1/(sqrt(y^2-9))
\int\:\frac{1}{\sqrt{y^{2}-9}}dy
laplacetransform t^3sin(2t)
laplacetransform\:t^{3}\sin(2t)
x*(dy)/(dx)-y=x^2sin(x)
x\cdot\:\frac{dy}{dx}-y=x^{2}\sin(x)
integral of y-1
\int\:y-1dy
inverse oflaplace 3/((s+2)^2+9)
inverselaplace\:\frac{3}{(s+2)^{2}+9}
integral of 1/(9sin^2(θ))
\int\:\frac{1}{9\sin^{2}(θ)}dθ
integral from 0 to pi of sin^5(x/2)
\int\:_{0}^{π}\sin^{5}(\frac{x}{2})dx
limit as t approaches pi of sin(t/6)
\lim\:_{t\to\:π}(\sin(\frac{t}{6}))
(dy)/(dx)=2ysqrt(16-x^2),y(0)=1
\frac{dy}{dx}=2y\sqrt{16-x^{2}},y(0)=1
derivative of ln(16-x^2)
\frac{d}{dx}(\ln(16-x^{2}))
integral of 2(2+x^2)^{3/2}
\int\:2(2+x^{2})^{\frac{3}{2}}dx
integral of x^2(x^3+6)^6
\int\:x^{2}(x^{3}+6)^{6}dx
tangent of f(x)=sqrt(1+x^3),\at x=2
tangent\:f(x)=\sqrt{1+x^{3}},\at\:x=2
(dy)/(dx)=x-1
\frac{dy}{dx}=x-1
f(x)=(6x^2+10)/(4x^3)
f(x)=\frac{6x^{2}+10}{4x^{3}}
(e^t)^'
(e^{t})^{\prime\:}
integral from 1 to 2 of (x+1)^2
\int\:_{1}^{2}(x+1)^{2}dx
laplacetransform e^{5(t-2)}(t^3+2t)^2
laplacetransform\:e^{5(t-2)}(t^{3}+2t)^{2}
derivative of g(x)=ln((5x-2)^4)
derivative\:g(x)=\ln((5x-2)^{4})
(4dx)/(dt)=4-2x
\frac{4dx}{dt}=4-2x
integral of (x+3)^{10}
\int\:(x+3)^{10}dx
inverse oflaplace s^4
inverselaplace\:s^{4}
integral of 2tan(x)sec^2(x)
\int\:2\tan(x)\sec^{2}(x)dx
integral from 0 to 1 of x*e^{-x^2}
\int\:_{0}^{1}x\cdot\:e^{-x^{2}}dx
sum from n=8 to infinity of n+13
\sum\:_{n=8}^{\infty\:}n+13
limit as x approaches 5+of (sqrt(x^2-25))/(x-5)
\lim\:_{x\to\:5+}(\frac{\sqrt{x^{2}-25}}{x-5})
(\partial)/(\partial x)(5x^{9y})
\frac{\partial\:}{\partial\:x}(5x^{9y})
integral of-4/(s+1)
\int\:-\frac{4}{s+1}ds
integral of (2x^2-x-7)
\int\:(2x^{2}-x-7)dx
(\partial)/(\partial x)(ln(3x+6y+9z))
\frac{\partial\:}{\partial\:x}(\ln(3x+6y+9z))
(dy)/(dx)=xe^{x+y}
\frac{dy}{dx}=xe^{x+y}
derivative of (7x^2+1)/(x^2+5)
derivative\:\frac{7x^{2}+1}{x^{2}+5}
derivative of 7cot(x)
\frac{d}{dx}(7\cot(x))
limit as x approaches infinity of 4/(x^2)
\lim\:_{x\to\:\infty\:}(\frac{4}{x^{2}})
(dy)/(dx)=e^y
\frac{dy}{dx}=e^{y}
derivative of e^{2x}-e^x
\frac{d}{dx}(e^{2x}-e^{x})
f(x)=sqrt(4-2x)-2
f(x)=\sqrt{4-2x}-2
(\partial)/(\partial x)((3xy+1)e^{-xy})
\frac{\partial\:}{\partial\:x}((3xy+1)e^{-xy})
tangent of 4x^2-15
tangent\:4x^{2}-15
derivative of f(x)= 7/(ln(x))
derivative\:f(x)=\frac{7}{\ln(x)}
integral of ((4x+10))/(x^2+2x+5)
\int\:\frac{(4x+10)}{x^{2}+2x+5}dx
sum from n=1 to infinity of 4/(3^n+1)
\sum\:_{n=1}^{\infty\:}\frac{4}{3^{n}+1}
tangent of y=3x^2+2^2x^2+1,(-1,0)
tangent\:y=3x^{2}+2^{2}x^{2}+1,(-1,0)
integral of (-1)/(x+4)
\int\:\frac{-1}{x+4}dx
tangent of f(x)=6+ln(x),\at x=1
tangent\:f(x)=6+\ln(x),\at\:x=1
(\partial)/(\partial x)(e^{3x}(x^2+y^2))
\frac{\partial\:}{\partial\:x}(e^{3x}(x^{2}+y^{2}))
derivative of e^{-5x}+e^{2x}
derivative\:e^{-5x}+e^{2x}
limit as x approaches-2 of x^2-x
\lim\:_{x\to\:-2}(x^{2}-x)
derivative of x*sin(x+cos(x))
\frac{d}{dx}(x\cdot\:\sin(x)+\cos(x))
inverse oflaplace (20)/(s^2+10)
inverselaplace\:\frac{20}{s^{2}+10}
integral from 0 to 1 of 1/(1+t^2)
\int\:_{0}^{1}\frac{1}{1+t^{2}}dt
integral of (3+2cos(θ))^2
\int\:(3+2\cos(θ))^{2}dθ
limit as x approaches 4 of 2/(x-4)
\lim\:_{x\to\:4}(\frac{2}{x-4})
(\partial)/(\partial x)(tan(6+2x^2y^4z^2))
\frac{\partial\:}{\partial\:x}(\tan(6+2x^{2}y^{4}z^{2}))
derivative of (x^3+1(2x^2+8x-5))
\frac{d}{dx}((x^{3}+1)(2x^{2}+8x-5))
integral of 1/(1+2x^2)
\int\:\frac{1}{1+2x^{2}}dx
integral of (e^{2x}+1)
\int\:(e^{2x}+1)dx
integral of (2x+4)/(x^2+4x+8)
\int\:\frac{2x+4}{x^{2}+4x+8}dx
integral of x+2
\int\:x+2dx
xdx+sin^2(x^{-1}y)(ydx-xdy)=0
xdx+\sin^{2}(x^{-1}y)(ydx-xdy)=0
tangent of-3/2 x^2+5x+5
tangent\:-\frac{3}{2}x^{2}+5x+5
derivative of tan(2x-x^3)
derivative\:\tan(2x-x^{3})
(\partial)/(\partial x)(x^3y+2xy^3)
\frac{\partial\:}{\partial\:x}(x^{3}y+2xy^{3})
integral of (x+2)e^{(x+2)}
\int\:(x+2)e^{(x+2)}dx
limit as x approaches 5 of (x^2+1)/(x+1)
\lim\:_{x\to\:5}(\frac{x^{2}+1}{x+1})
integral of x/(sqrt(36x^2+9))
\int\:\frac{x}{\sqrt{36x^{2}+9}}dx
limit as x approaches 0+of (1+3x)^{1/x}
\lim\:_{x\to\:0+}((1+3x)^{\frac{1}{x}})
(\partial)/(\partial x)(-y-(2x)/(y^3))
\frac{\partial\:}{\partial\:x}(-y-\frac{2x}{y^{3}})
integral of (ln(x+1))/((x+1))
\int\:\frac{\ln(x+1)}{(x+1)}dx
(\partial)/(\partial x)(xln(x+2y))
\frac{\partial\:}{\partial\:x}(x\ln(x+2y))
inverse oflaplace 1/(s^2+6s+34)
inverselaplace\:\frac{1}{s^{2}+6s+34}
laplacetransform 1-e^{-t}
laplacetransform\:1-e^{-t}
area cos(x),sin(x),[0, pi/4 ]
area\:\cos(x),\sin(x),[0,\frac{π}{4}]
integral of 7/((x^2+1)^{3/2)}
\int\:\frac{7}{(x^{2}+1)^{\frac{3}{2}}}dx
integral from 0 to 4 of x/(x^2-9)
\int\:_{0}^{4}\frac{x}{x^{2}-9}dx
integral of (sqrt(5x+4))/(x-1)
\int\:\frac{\sqrt{5x+4}}{x-1}dx
(d^2)/(dx^2)(5e^xcos(x))
\frac{d^{2}}{dx^{2}}(5e^{x}\cos(x))
x(dy)/(dx)+xy=1-y,y(1)=0
x\frac{dy}{dx}+xy=1-y,y(1)=0
(e^x+y)dx+(2+x+ye^y)dy=0,y(0)=0
(e^{x}+y)dx+(2+x+ye^{y})dy=0,y(0)=0
area y=x^3,y=x^2,x=-1
area\:y=x^{3},y=x^{2},x=-1
integral of (23)/((1-x^2)^{3/2)}
\int\:\frac{23}{(1-x^{2})^{\frac{3}{2}}}dx
limit as x approaches 5-of (8x)/(x-5)
\lim\:_{x\to\:5-}(\frac{8x}{x-5})
d/(dt)(bsin(t))
\frac{d}{dt}(b\sin(t))
derivative of x^2+e^{x^2}
\frac{d}{dx}(x^{2}+e^{x^{2}})
integral of sin^3(x)cos^{10}(x)
\int\:\sin^{3}(x)\cos^{10}(x)dx
derivative of 2/5 x^{5/2}
\frac{d}{dx}(\frac{2}{5}x^{\frac{5}{2}})
integral of (x^3-2x^{1/2}+4)^2
\int\:(x^{3}-2x^{\frac{1}{2}}+4)^{2}dx
derivative of 1/(sqrt(y-5x^2))
\frac{d}{dx}(\frac{1}{\sqrt{y-5x^{2}}})
y^'-y=2t
y^{\prime\:}-y=2t
x^2y^'+2xy=25cos^2(x)
x^{2}y^{\prime\:}+2xy=25\cos^{2}(x)
tangent of (-8x)/(x^2+1)
tangent\:\frac{-8x}{x^{2}+1}
inverse oflaplace 5/(s(s^2+4s+5))
inverselaplace\:\frac{5}{s(s^{2}+4s+5)}
integral of (6x+7)/((x+2)^2)
\int\:\frac{6x+7}{(x+2)^{2}}dx
1
..
1136
1137
1138
1139
1140
..
2459