Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of-(cos(2x)/2)
\frac{d}{dx}(-\frac{\cos(2x)}{2})
integral of t^5ln(t)
\int\:t^{5}\ln(t)dt
derivative of e^{(e^{(x)}-x)}
derivative\:e^{(e^{(x)}-x)}
derivative of f(x)=tan(4x^2-3x-4)
derivative\:f(x)=\tan(4x^{2}-3x-4)
tangent of f(x)=2x^2+3x,(-3,9)
tangent\:f(x)=2x^{2}+3x,(-3,9)
derivative of (x^3-1^4)
\frac{d}{dx}((x^{3}-1)^{4})
(\partial)/(\partial x)(sqrt(11-4x^2-y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{11-4x^{2}-y^{2}})
derivative of (19x^2)/2
derivative\:\frac{19x^{2}}{2}
(\partial)/(\partial x)(2x^3y^2cos(6x^3y))
\frac{\partial\:}{\partial\:x}(2x^{3}y^{2}\cos(6x^{3}y))
integral of 7/(sec(x)-1)
\int\:\frac{7}{\sec(x)-1}dx
sum from k=1 to infinity of (5k)/(e^{2k)}
\sum\:_{k=1}^{\infty\:}\frac{5k}{e^{2k}}
derivative of ((2+e^x/3)^9)
\frac{d}{dx}((\frac{2+e^{x}}{3})^{9})
integral of (e^{2x})/(e^{5-x)}
\int\:\frac{e^{2x}}{e^{5-x}}dx
integral of (40)/(1-cos(8x))
\int\:\frac{40}{1-\cos(8x)}dx
limit as x approaches infinity of 67
\lim\:_{x\to\:\infty\:}(67)
integral from-2 to x of (x+2)/3
\int\:_{-2}^{x}\frac{x+2}{3}dx
derivative of (sqrt(3))/(x^9)
derivative\:\frac{\sqrt{3}}{x^{9}}
limit as x approaches infinity of (x+1)^{x+2}
\lim\:_{x\to\:\infty\:}((x+1)^{x+2})
(dx)/(dt)=(4x^2+7tsqrt(4t^2+x^2))/(4tx)
\frac{dx}{dt}=\frac{4x^{2}+7t\sqrt{4t^{2}+x^{2}}}{4tx}
derivative of-(81/((1+9x)^2))
\frac{d}{dx}(-\frac{81}{(1+9x)^{2}})
area y=5x^2,y=30x-45,[0,45]
area\:y=5x^{2},y=30x-45,[0,45]
y^{''}+25y=cos(5t)
y^{\prime\:\prime\:}+25y=\cos(5t)
derivative of Y=Y=ln(sqrt(x-3))
derivative\:Y=Y=\ln(\sqrt{x-3})
integral of sin(2x)*e^x
\int\:\sin(2x)\cdot\:e^{x}dx
integral of arctan(x^2)
\int\:\arctan(x^{2})dx
integral from 0 to 1/5 of 2arcsin(5y)
\int\:_{0}^{\frac{1}{5}}2\arcsin(5y)dy
derivative of f(x)=sin(x)csc(x)
derivative\:f(x)=\sin(x)\csc(x)
simplify (sec(x)+tan(x))(sec(x)-tan(x))
simplify\:(\sec(x)+\tan(x))(\sec(x)-\tan(x))
integral of 1/(64e^{-3x)+e^{3x}}
\int\:\frac{1}{64e^{-3x}+e^{3x}}dx
sum from n=0 to infinity of sin(npi)
\sum\:_{n=0}^{\infty\:}\sin(nπ)
(2x^3-xy^2-2y+3)dx-(x^2y+2x)dy=0
(2x^{3}-xy^{2}-2y+3)dx-(x^{2}y+2x)dy=0
laplacetransform t^2e^{3t}
laplacetransform\:t^{2}e^{3t}
integral of sin^2(4x)cos^2(4x)
\int\:\sin^{2}(4x)\cos^{2}(4x)dx
derivative of 5^{sin(pix})
\frac{d}{dx}(5^{\sin(πx)})
derivative of (e^x)/1
derivative\:\frac{e^{x}}{1}
d/(du)(4sqrt(u))
\frac{d}{du}(4\sqrt{u})
integral of (3x-3)/(x^2-x-2)
\int\:\frac{3x-3}{x^{2}-x-2}dx
integral of 0.5e^{-0.5(x-1)}
\int\:0.5e^{-0.5(x-1)}dx
derivative of 1/(sqrt(x^4+x^2+1))
\frac{d}{dx}(\frac{1}{\sqrt{x^{4}+x^{2}+1}})
limit as x approaches-2 of x+2
\lim\:_{x\to\:-2}(x+2)
sum from n=0 to infinity of 3/(3^n)
\sum\:_{n=0}^{\infty\:}\frac{3}{3^{n}}
partialfraction (x^2)/(x^2-9)
partialfraction\:\frac{x^{2}}{x^{2}-9}
limit as x approaches 0 of ((3e^x-3))/x
\lim\:_{x\to\:0}(\frac{(3e^{x}-3)}{x})
integral of+(x)
\int\:+(x)dx
integral of 4tan^4(xse)c^6x
\int\:4\tan^{4}(xse)c^{6}xdx
limit as x approaches-infinity of (1+1/x)^{2x}
\lim\:_{x\to\:-\infty\:}((1+\frac{1}{x})^{2x})
derivative of 9/(x+2)
derivative\:\frac{9}{x+2}
integral of 3x^2+10x-5
\int\:3x^{2}+10x-5dx
limit as x approaches-2-of-3x^2-5x+3
\lim\:_{x\to\:-2-}(-3x^{2}-5x+3)
integral of 10csc^2(x)-sin(x)
\int\:10\csc^{2}(x)-\sin(x)dx
(x^2+1)(dy)/(dx)+6x(y-1)=0
(x^{2}+1)\frac{dy}{dx}+6x(y-1)=0
derivative of 5sin(t)cos(t)
derivative\:5\sin(t)\cos(t)
cos(x),sin(2x),x=0,x= pi/2
\cos(x),\sin(2x),x=0,x=\frac{π}{2}
derivative of ln(x)sqrt(x)
derivative\:\ln(x)\sqrt{x}
tangent of f(x)=x^4+4e^x,(0,4)
tangent\:f(x)=x^{4}+4e^{x},(0,4)
(dy)/(dt)=-2(y-4)
\frac{dy}{dt}=-2(y-4)
integral of (sqrt(x^2+16))/(x^4)
\int\:\frac{\sqrt{x^{2}+16}}{x^{4}}dx
limit as x approaches 1 of x^2+3x-4
\lim\:_{x\to\:1}(x^{2}+3x-4)
derivative of ((x^2e^x))/(x^2+e^x)
derivative\:\frac{(x^{2}e^{x})}{x^{2}+e^{x}}
derivative of 5e^x(cos(x-sin(x)))
\frac{d}{dx}(5e^{x}(\cos(x)-\sin(x)))
(dy)/(dx)=(x-8)e^{-2y},y(8)=ln(8)
\frac{dy}{dx}=(x-8)e^{-2y},y(8)=\ln(8)
derivative of tan^4(x)
\frac{d}{dx}(\tan^{4}(x))
(dy)/(dx)=(xsqrt(1-y^2))
\frac{dy}{dx}=(x\sqrt{1-y^{2}})
integral of 3tan^3(θ)
\int\:3\tan^{3}(θ)dθ
y^'=xy^2(1+x^2)^{-1/2},y(0)=2
y^{\prime\:}=xy^{2}(1+x^{2})^{-\frac{1}{2}},y(0)=2
slope of (4,1),(6,7)
slope\:(4,1),(6,7)
(\partial)/(\partial x)((1+2/y)cos(x))
\frac{\partial\:}{\partial\:x}((1+\frac{2}{y})\cos(x))
derivative of 3cos(x^2-1)
\frac{d}{dx}(3\cos(x^{2}-1))
integral from 5 to 7 of 1/(4+(x-5)^2)
\int\:_{5}^{7}\frac{1}{4+(x-5)^{2}}dx
derivative of sqrt(x^3)-\sqrt[3]{x^5}
\frac{d}{dx}(\sqrt{x^{3}}-\sqrt[3]{x^{5}})
limit as x approaches 2 of x(x+4)
\lim\:_{x\to\:2}(x(x+4))
tangent of (x^2)/(x-7)
tangent\:\frac{x^{2}}{x-7}
integral of 1/(x-3)
\int\:\frac{1}{x-3}dx
integral of 5^{cos(3x)}sin(3x)
\int\:5^{\cos(3x)}\sin(3x)dx
derivative of f(x)=9e^x
derivative\:f(x)=9e^{x}
derivative of (2x+3/(3x-2))
\frac{d}{dx}(\frac{2x+3}{3x-2})
taylor e^{2x}-x
taylor\:e^{2x}-x
10y^{''}-10y^'+125y=0
10y^{\prime\:\prime\:}-10y^{\prime\:}+125y=0
limit as x approaches infinity of (1+1/(6x))^{5x}
\lim\:_{x\to\:\infty\:}((1+\frac{1}{6x})^{5x})
laplacetransform 3t^2
laplacetransform\:3t^{2}
integral from 0 to 3 of 5e^{-3x}
\int\:_{0}^{3}5e^{-3x}dx
integral of (1-x)/(1-sqrt(x))
\int\:\frac{1-x}{1-\sqrt{x}}dx
limit as x approaches+(-infinity)+of-x^2
\lim\:_{x\to\:+(-\infty\:)+}(-x^{2})
integral from 0 to 1 of 4/(x^2)
\int\:_{0}^{1}\frac{4}{x^{2}}dx
limit as x approaches 0+of x^{-4/(ln(x))}
\lim\:_{x\to\:0+}(x^{-\frac{4}{\ln(x)}})
limit as x approaches 0-of (-1)/x
\lim\:_{x\to\:0-}(\frac{-1}{x})
derivative of y=log_{5}(sqrt(5x+4))
derivative\:y=\log_{5}(\sqrt{5x+4})
(\partial)/(\partial y)(sqrt(4-x^2-4y^2))
\frac{\partial\:}{\partial\:y}(\sqrt{4-x^{2}-4y^{2}})
sum from n=0 to infinity of 10^nx^n
\sum\:_{n=0}^{\infty\:}10^{n}x^{n}
integral of x^2e^{10x}
\int\:x^{2}e^{10x}dx
derivative of y=(1+xf(x))/(sqrt(x))
derivative\:y=\frac{1+xf(x)}{\sqrt{x}}
(\partial)/(\partial x)((x-y)^4)
\frac{\partial\:}{\partial\:x}((x-y)^{4})
integral of (8+7x)/(1+x^2)
\int\:\frac{8+7x}{1+x^{2}}dx
tangent of f(x)=x^2-2,\at x=0
tangent\:f(x)=x^{2}-2,\at\:x=0
integral of (2x^3-4x^2+18x)/(x^2+9)
\int\:\frac{2x^{3}-4x^{2}+18x}{x^{2}+9}dx
integral of sqrt(x)sqrt(x\sqrt{x)+7}
\int\:\sqrt{x}\sqrt{x\sqrt{x}+7}dx
integral from 0 to pi/4 of sin^4(x)
\int\:_{0}^{\frac{π}{4}}\sin^{4}(x)dx
2y^'=4tcos(t)y^2,y(0)=1
2y^{\prime\:}=4t\cos(t)y^{2},y(0)=1
integral of 25x^{3/2}
\int\:25x^{\frac{3}{2}}dx
derivative of (x^2(x+1)^{1/3})
\frac{d}{dx}((x^{2})(x+1)^{\frac{1}{3}})
1
..
1400
1401
1402
1403
1404
..
2459