Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 0 of (2tan(x))/x
\lim\:_{x\to\:0}(\frac{2\tan(x)}{x})
integral of 3/(1+sqrt(3x))
\int\:\frac{3}{1+\sqrt{3x}}dx
(\partial)/(\partial x)(6x^2y)
\frac{\partial\:}{\partial\:x}(6x^{2}y)
dy=(x+6)/(x+1)dx
dy=\frac{x+6}{x+1}dx
derivative of y=4sin(5x-2)
derivative\:y=4\sin(5x-2)
(t^2+1)(dy)/(dt)=yt-y
(t^{2}+1)\frac{dy}{dt}=yt-y
sum from n=1 to infinity of 1/(n8^n)
\sum\:_{n=1}^{\infty\:}\frac{1}{n8^{n}}
integral of 1/(3+25x^2)
\int\:\frac{1}{3+25x^{2}}dx
integral of cot^6(x)
\int\:\cot^{6}(x)dx
f(t)=\sqrt[4]{t}
f(t)=\sqrt[4]{t}
slope of (-7.6)(4.2)
slope\:(-7.6)(4.2)
d/(dt)(t/(t-1))
\frac{d}{dt}(\frac{t}{t-1})
derivative of (x^6/(3-x^5))
\frac{d}{dx}(\frac{x^{6}}{3-x^{5}})
derivative of 4te^{-t}
derivative\:4te^{-t}
limit as x approaches-1 of 1+e^{1/x}
\lim\:_{x\to\:-1}(1+e^{\frac{1}{x}})
integral from 2 to 4 of (-x^2+6x-8)
\int\:_{2}^{4}(-x^{2}+6x-8)dx
derivative of x^3(8x^2+2x-3^2)
\frac{d}{dx}(x^{3}(8x^{2}+2x-3)^{2})
limit as x approaches+0 of (2x+1)/(x^3)
\lim\:_{x\to\:+0}(\frac{2x+1}{x^{3}})
(\partial)/(\partial y)(xye^{-3y})
\frac{\partial\:}{\partial\:y}(xye^{-3y})
area x^2-3x,5x,[0,8]
area\:x^{2}-3x,5x,[0,8]
area x^2-1,0,2
area\:x^{2}-1,0,2
integral from 0 to 4 of 3t-8
\int\:_{0}^{4}3t-8dt
(dy)/(dx)+y=2xy^2ex
\frac{dy}{dx}+y=2xy^{2}ex
inverse oflaplace 1/(4s+1)
inverselaplace\:\frac{1}{4s+1}
derivative of (4x-x^2/(6-x))
\frac{d}{dx}(\frac{4x-x^{2}}{6-x})
tangent of f(x)=sqrt((2x-6)/(x-1))
tangent\:f(x)=\sqrt{\frac{2x-6}{x-1}}
(dy)/(dx)=y^{1/2}
\frac{dy}{dx}=y^{\frac{1}{2}}
integral of (72)/(1-cos(8x))
\int\:\frac{72}{1-\cos(8x)}dx
derivative of e^{-x^4}
derivative\:e^{-x^{4}}
integral of 1/((8x+9)^2)
\int\:\frac{1}{(8x+9)^{2}}dx
sum from n=1 to infinity of (-4)^n
\sum\:_{n=1}^{\infty\:}(-4)^{n}
integral of sec(x)tan(x)-4e^x
\int\:\sec(x)\tan(x)-4e^{x}dx
integral of sinh(4x)
\int\:\sinh(4x)dx
taylor (1+(1/2)*x)-4
taylor\:(1+(\frac{1}{2})\cdot\:x)-4
limit as t approaches 0 of e^{5t}
\lim\:_{t\to\:0}(e^{5t})
(d^2)/(dx^2)(sqrt(r)+\sqrt[5]{r})
\frac{d^{2}}{dx^{2}}(\sqrt{r}+\sqrt[5]{r})
derivative of e^{x^2-3}
\frac{d}{dx}(e^{x^{2}-3})
integral from 0 to 1 of sqrt(1+9x)
\int\:_{0}^{1}\sqrt{1+9x}dx
d/(dt)(10sin(t))
\frac{d}{dt}(10\sin(t))
d/(dt)(ln(-ln(1-t)))
\frac{d}{dt}(\ln(-\ln(1-t)))
(\partial)/(\partial y)(4x-y)
\frac{\partial\:}{\partial\:y}(4x-y)
integral from 4 to 16 of (3sqrt(x))
\int\:_{4}^{16}(3\sqrt{x})dx
derivative of ((x-y)/((x+y)))
\frac{d}{dx}(\frac{(x-y)}{(x+y)})
integral of xsin((x^2)/2)
\int\:x\sin(\frac{x^{2}}{2})dx
integral of 2/(7x)
\int\:\frac{2}{7x}dx
(dy)/(dx)= x/(49y)
\frac{dy}{dx}=\frac{x}{49y}
(d^2y)/(dt^2)+4(dy)/(dt)+4y=0
\frac{d^{2}y}{dt^{2}}+4\frac{dy}{dt}+4y=0
integral of 1/(e^x+1)
\int\:\frac{1}{e^{x}+1}dx
(\partial)/(\partial t)(s*cos(t))
\frac{\partial\:}{\partial\:t}(s\cdot\:\cos(t))
d/(dy)(sqrt(1+y^2))
\frac{d}{dy}(\sqrt{1+y^{2}})
tangent of f(x)=2x^2+4,\at x=-2
tangent\:f(x)=2x^{2}+4,\at\:x=-2
limit as z approaches 1+i of z^2-5z+10
\lim\:_{z\to\:1+i}(z^{2}-5z+10)
y^'=2y-4x
y^{\prime\:}=2y-4x
limit as x approaches-3 of x/(x+3)
\lim\:_{x\to\:-3}(\frac{x}{x+3})
limit as x approaches 0 of (x-xcos(x))/(sin^2(3x))
\lim\:_{x\to\:0}(\frac{x-x\cos(x)}{\sin^{2}(3x)})
derivative of 2x^3-3x^2-36x
\frac{d}{dx}(2x^{3}-3x^{2}-36x)
limit as x approaches-infinity of 2/x-3
\lim\:_{x\to\:-\infty\:}(\frac{2}{x}-3)
limit as n approaches infinity of 1/2
\lim\:_{n\to\:\infty\:}(\frac{1}{2})
integral of x^3*e^{-x}
\int\:x^{3}\cdot\:e^{-x}dx
tangent of f(x)= 5/x ,(-3,(-5/3))
tangent\:f(x)=\frac{5}{x},(-3,(-\frac{5}{3}))
(dx)/(dt)+3=0
\frac{dx}{dt}+3=0
derivative of y=sqrt(4+csc(t^4))
derivative\:y=\sqrt{4+\csc(t^{4})}
derivative of y=((x-1)/(x^2+x+1))^4
derivative\:y=(\frac{x-1}{x^{2}+x+1})^{4}
y^'+2xy=2x
y^{\prime\:}+2xy=2x
integral of 5e^xsqrt(1+e^x)
\int\:5e^{x}\sqrt{1+e^{x}}dx
limit as x approaches-9 of (x^2-3)/(9-x)
\lim\:_{x\to\:-9}(\frac{x^{2}-3}{9-x})
integral from 0 to pi/2 of 12cos^5(x)
\int\:_{0}^{\frac{π}{2}}12\cos^{5}(x)dx
integral of (x^3)/(sqrt(3x^2+\sqrt{2))}
\int\:\frac{x^{3}}{\sqrt{3x^{2}+\sqrt{2}}}dx
inverse oflaplace s/(s(s+1))
inverselaplace\:\frac{s}{s(s+1)}
integral of (e^{8/x})/(x^2)
\int\:\frac{e^{\frac{8}{x}}}{x^{2}}dx
derivative of-2sec^2(xtan(x))
\frac{d}{dx}(-2\sec^{2}(x)\tan(x))
limit as x approaches 0 of-csc^2(x)
\lim\:_{x\to\:0}(-\csc^{2}(x))
derivative of 3a^{3x}
\frac{d}{dx}(3a^{3x})
derivative of y=sin^5(3x)
derivative\:y=\sin^{5}(3x)
integral of sqrt(2x+3)
\int\:\sqrt{2x+3}dx
derivative of sqrt(5-6x)
\frac{d}{dx}(\sqrt{5-6x})
integral of sqrt(x)(x+3)
\int\:\sqrt{x}(x+3)dx
derivative of 3x^2-27
\frac{d}{dx}(3x^{2}-27)
sum from n=1 to infinity of 1/((2n-1)^6)
\sum\:_{n=1}^{\infty\:}\frac{1}{(2n-1)^{6}}
integral from 0 to ln(3) of e^{2x}
\int\:_{0}^{\ln(3)}e^{2x}dx
limit as x approaches 0+of 3x^{x/2}
\lim\:_{x\to\:0+}(3x^{\frac{x}{2}})
area y=3x,y=9x^2
area\:y=3x,y=9x^{2}
y^{''}+4y=9e^{2t}sin(2t)+5t^2
y^{\prime\:\prime\:}+4y=9e^{2t}\sin(2t)+5t^{2}
tangent of sec(x)
tangent\:\sec(x)
limit as x approaches 0 of arctan(x)
\lim\:_{x\to\:0}(\arctan(x))
inverse oflaplace (s-1)/(s^2-2s+1)
inverselaplace\:\frac{s-1}{s^{2}-2s+1}
(\partial)/(\partial y)(ln(x+6y+5z))
\frac{\partial\:}{\partial\:y}(\ln(x+6y+5z))
integral of (10)/((x+1)(x^2+9)^2)
\int\:\frac{10}{(x+1)(x^{2}+9)^{2}}dx
limit as x approaches 8-of (x-8)/(|x-8|)
\lim\:_{x\to\:8-}(\frac{x-8}{\left|x-8\right|})
derivative of 2(4-9x^4)
\frac{d}{dx}(2(4-9x)^{4})
(xy+y+y^2)dx+(x+2y)dy=0
(xy+y+y^{2})dx+(x+2y)dy=0
tangent of f(x)=sqrt(x-5),\at x=6
tangent\:f(x)=\sqrt{x-5},\at\:x=6
area x=7y^3,x=18y^2
area\:x=7y^{3},x=18y^{2}
integral of ge^{-cx}
\int\:ge^{-cx}dx
tangent of f(x)=ln(x^2-2x+1),\at x=2
tangent\:f(x)=\ln(x^{2}-2x+1),\at\:x=2
derivative of ((x^2))/(2+x)
derivative\:\frac{(x^{2})}{2+x}
integral of e^{-0.06x}
\int\:e^{-0.06x}dx
(\partial)/(\partial y)(sin(x-y)+(xy))
\frac{\partial\:}{\partial\:y}(\sin(x-y)+(xy))
(\partial)/(\partial x)(-4x^2y-4x)
\frac{\partial\:}{\partial\:x}(-4x^{2}y-4x)
derivative of (x^2+4x+8/((x+2)^2))
\frac{d}{dx}(\frac{x^{2}+4x+8}{(x+2)^{2}})
1
..
1440
1441
1442
1443
1444
..
2459