Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 1 of 3x+4sqrt(x)
\lim\:_{x\to\:1}(3x+4\sqrt{x})
area y=x+2,y=-3x+6,y=(2-x)/3
area\:y=x+2,y=-3x+6,y=\frac{2-x}{3}
limit as x approaches+(-2) of 0
\lim\:_{x\to\:+(-2)}(0)
tangent of 7x+cox(x)
tangent\:7x+cox(x)
(\partial)/(\partial x)(e^{-x})
\frac{\partial\:}{\partial\:x}(e^{-x})
integral from 0 to pi/8 of sin(2x)
\int\:_{0}^{\frac{π}{8}}\sin(2x)dx
integral of 3/(2-x)
\int\:\frac{3}{2-x}dx
integral from 1 to 3 of 7r^3ln(r)
\int\:_{1}^{3}7r^{3}\ln(r)dr
inverse oflaplace 4/(2(s-3)^2-50)
inverselaplace\:\frac{4}{2(s-3)^{2}-50}
tangent of f(x)=(x^3-4x+1)e^x,\at x=0
tangent\:f(x)=(x^{3}-4x+1)e^{x},\at\:x=0
area x^2+2x+2,2x^2+3x-4
area\:x^{2}+2x+2,2x^{2}+3x-4
derivative of ln(sqrt(x^2+7))
\frac{d}{dx}(\ln(\sqrt{x^{2}+7}))
limit as x approaches pi/2 of sin(x)
\lim\:_{x\to\:\frac{π}{2}}(\sin(x))
integral of 6/(x^2+10x+16)
\int\:\frac{6}{x^{2}+10x+16}dx
integral of 6sin^4(x)
\int\:6\sin^{4}(x)dx
derivative of (12x^2-12(9-4x))
\frac{d}{dx}((12x^{2}-12)(9-4x))
(\partial)/(\partial x)(x^2-2xy+3y^2x^3)
\frac{\partial\:}{\partial\:x}(x^{2}-2xy+3y^{2}x^{3})
derivative of y=ln((x^2-1)/(x^2+1))
derivative\:y=\ln(\frac{x^{2}-1}{x^{2}+1})
(dy)/(dx)+12y=6
\frac{dy}{dx}+12y=6
derivative of-10e^{-5x^2}x
derivative\:-10e^{-5x^{2}}x
integral of 6xln(5x)
\int\:6x\ln(5x)dx
area y=x^4-4x^2+4,y=x^2
area\:y=x^{4}-4x^{2}+4,y=x^{2}
tangent of f(x)=2x-x^2,(a,0)
tangent\:f(x)=2x-x^{2},(a,0)
derivative of (3x^2+1^{40}(4x-7)^{50})
\frac{d}{dx}((3x^{2}+1)^{40}(4x-7)^{50})
integral of x/(sqrt(27+6x-x^2))
\int\:\frac{x}{\sqrt{27+6x-x^{2}}}dx
parity tan^{40}(sec(cos(x)))
parity\:\tan^{40}(\sec(\cos(x)))
inverse oflaplace 4/(s^2(s+1))
inverselaplace\:\frac{4}{s^{2}(s+1)}
limit as n approaches infinity of (3^{n+1})/((n)!)
\lim\:_{n\to\:\infty\:}(\frac{3^{n+1}}{(n)!})
y^'=(x^3-2y)/x
y^{\prime\:}=\frac{x^{3}-2y}{x}
integral of t^2+e^t
\int\:t^{2}+e^{t}dt
integral of x^3e^{4x}
\int\:x^{3}e^{4x}dx
integral from 0 to pi of 9sin^2(4x)
\int\:_{0}^{π}9\sin^{2}(4x)dx
limit as x approaches 0 of sin^3(2x)
\lim\:_{x\to\:0}(\sin^{3}(2x))
derivative of (-8x/((x^2-16)^2))
\frac{d}{dx}(\frac{-8x}{(x^{2}-16)^{2}})
(\partial)/(\partial x)(e^{-x-3y})
\frac{\partial\:}{\partial\:x}(e^{-x-3y})
area x^2-6,|x|
area\:x^{2}-6,\left|x\right|
slope of f(x)5x+y=6
slope\:f(x)5x+y=6
integral of x/(sqrt(2-x))
\int\:\frac{x}{\sqrt{2-x}}dx
integral of tan^5(x)sec(x)
\int\:\tan^{5}(x)\sec(x)dx
integral of (x^2-3x-5)/(x^2-5x)
\int\:\frac{x^{2}-3x-5}{x^{2}-5x}dx
limit as y approaches 0 of 7/(y^2+y)-7/y
\lim\:_{y\to\:0}(\frac{7}{y^{2}+y}-\frac{7}{y})
maclaurin 5e^{-x}
maclaurin\:5e^{-x}
f^'(x)=sin(x^2)
f^{\prime\:}(x)=\sin(x^{2})
derivative of (sin(x)^{ln(x)})
\frac{d}{dx}((\sin(x))^{\ln(x)})
(\partial)/(\partial x)(x^2y+5y^3)
\frac{\partial\:}{\partial\:x}(x^{2}y+5y^{3})
(dx)/(dt)=3t^2(x^2+4)
\frac{dx}{dt}=3t^{2}(x^{2}+4)
(\partial)/(\partial x)(9(xyz)/(x+y+z))
\frac{\partial\:}{\partial\:x}(9\frac{xyz}{x+y+z})
integral of 3/(x+3)
\int\:\frac{3}{x+3}dx
parity x^{cos(x)}
parity\:x^{\cos(x)}
integral of 2/(sin(2x))
\int\:\frac{2}{\sin(2x)}dx
derivative of 5^{-2x}
\frac{d}{dx}(5^{-2x})
(d^2)/(dx^2)((e^x)/(cos(x)))
\frac{d^{2}}{dx^{2}}(\frac{e^{x}}{\cos(x)})
(\partial)/(\partial y)(xz+xyz)
\frac{\partial\:}{\partial\:y}(xz+xyz)
slope of (-2,-5),(-3,5)
slope\:(-2,-5),(-3,5)
integral of (x-sqrt(25-x^2))
\int\:(x-\sqrt{25-x^{2}})dx
limit as x approaches 0 of ln(tan(x))
\lim\:_{x\to\:0}(\ln(\tan(x)))
derivative of 5x+4
\frac{d}{dx}(5x+4)
limit as x approaches 4 of sin(2/x-1/2)
\lim\:_{x\to\:4}(\sin(\frac{2}{x}-\frac{1}{2}))
derivative of (x^2-8x+4/(2x))
\frac{d}{dx}(\frac{x^{2}-8x+4}{2x})
limit as x approaches 2 of 3-x^2
\lim\:_{x\to\:2}(3-x^{2})
derivative of (1+7x^2)(x-x^2)
derivative\:(1+7x^{2})(x-x^{2})
(dy)/(dx)+(7/x)y=x+7
\frac{dy}{dx}+(\frac{7}{x})y=x+7
derivative of arccos(e^{3x})
derivative\:\arccos(e^{3x})
integral from 0 to pi/4 of tan^2(x)
\int\:_{0}^{\frac{π}{4}}\tan^{2}(x)dx
sum from n=1 to infinity of 1/(5^{n+3)}
\sum\:_{n=1}^{\infty\:}\frac{1}{5^{n+3}}
integral of (3x^2)/(125)
\int\:\frac{3x^{2}}{125}dx
derivative of sin(cos(tan(x)))
derivative\:\sin(\cos(\tan(x)))
derivative of sqrt(1+cos(2x))
\frac{d}{dx}(\sqrt{1+\cos(2x)})
derivative of y=\sqrt[5]{x^4}
derivative\:y=\sqrt[5]{x^{4}}
implicit ln(xy^9)=xy
implicit\:\ln(xy^{9})=xy
integral of (x^3)/(27)-4/9 x^2+4/3 x+1
\int\:\frac{x^{3}}{27}-\frac{4}{9}x^{2}+\frac{4}{3}x+1dx
derivative of-3/(sqrt(x^5))
\frac{d}{dx}(-\frac{3}{\sqrt{x^{5}}})
xy^'+y=(xy)^{3/2}
xy^{\prime\:}+y=(xy)^{\frac{3}{2}}
integral from-9 to 0 of 2+sqrt(81-x^2)
\int\:_{-9}^{0}2+\sqrt{81-x^{2}}dx
integral of (-x-1)/(x^2+1)
\int\:\frac{-x-1}{x^{2}+1}dx
(\partial)/(\partial y)(2x+y^2)
\frac{\partial\:}{\partial\:y}(2x+y^{2})
area f(x)=x^3,0,4
area\:f(x)=x^{3},0,4
y^'-3y=-6y^3
y^{\prime\:}-3y=-6y^{3}
integral from 0 to 1 of 4/(sqrt(1-x^2))
\int\:_{0}^{1}\frac{4}{\sqrt{1-x^{2}}}dx
limit as x approaches 0 of x/(x^2-9x)
\lim\:_{x\to\:0}(\frac{x}{x^{2}-9x})
derivative of (e^x/(e^x+e^{-x)})
\frac{d}{dx}(\frac{e^{x}}{e^{x}+e^{-x}})
x^2y^'+2xy=ln(x),y(1)=3
x^{2}y^{\prime\:}+2xy=\ln(x),y(1)=3
area x,7,(x^2)/(28)
area\:x,7,\frac{x^{2}}{28}
integral of-2xcos(4x)
\int\:-2x\cos(4x)dx
integral of ((2e^x))/x
\int\:\frac{(2e^{x})}{x}dx
integral of 1/(16x^2-25)
\int\:\frac{1}{16x^{2}-25}dx
derivative of cos(2x-2sin(x))
\frac{d}{dx}(\cos(2x)-2\sin(x))
integral from 2 to 3 of integral from 2 to 6 of (xye^{x+y})
\int\:_{2}^{3}\int\:_{2}^{6}(xye^{x+y})dydx
f(x)=(x-3)/2
f(x)=\frac{x-3}{2}
2xyy^'=x^2-y^2
2xyy^{\prime\:}=x^{2}-y^{2}
limit as x approaches 0 of csc(6x)
\lim\:_{x\to\:0}(\csc(6x))
y^'=0.5y-450
y^{\prime\:}=0.5y-450
integral from 1 to 2 of (1+2y)
\int\:_{1}^{2}(1+2y)dy
limit as x approaches 0 of 3x^2
\lim\:_{x\to\:0}(3x^{2})
derivative of 3x^2-2y^2
\frac{d}{dx}(3x^{2}-2y^{2})
integral of sin(u)cos^2(u)
\int\:\sin(u)\cos^{2}(u)du
integral from 1 to 2 of x^3+x^2-1
\int\:_{1}^{2}x^{3}+x^{2}-1dx
integral from 0 to 5 of x^3e^x
\int\:_{0}^{5}x^{3}e^{x}dx
y^{''}+121y=cos(8t)
y^{\prime\:\prime\:}+121y=\cos(8t)
integral of 7/(x^2-9)
\int\:\frac{7}{x^{2}-9}dx
1
..
203
204
205
206
207
..
2459