Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(-2xysin(xy^2))
\frac{\partial\:}{\partial\:x}(-2xy\sin(xy^{2}))
tangent of tan^2(x)
tangent\:\tan^{2}(x)
y^'=y-x^2+1,y(0)=0
y^{\prime\:}=y-x^{2}+1,y(0)=0
integral of (b-x)/x
\int\:\frac{b-x}{x}dx
(\partial)/(\partial x)((e^y)/(x+y^3))
\frac{\partial\:}{\partial\:x}(\frac{e^{y}}{x+y^{3}})
limit as x approaches 0 of (x-20)/(x-4)
\lim\:_{x\to\:0}(\frac{x-20}{x-4})
(d^2y)/(dt^2)+2(dy)/(dt)+y=2
\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=2
integral of m 1 (v)(v)
\int\:m\frac{d}{1}(v)(v)dx
integral of 1/(a-x)
\int\:\frac{1}{a-x}dx
integral of (x+2)sqrt(4x+x^2)
\int\:(x+2)\sqrt{4x+x^{2}}dx
(\partial)/(\partial z)(2x^2+2yz)
\frac{\partial\:}{\partial\:z}(2x^{2}+2yz)
limit as x approaches-1 of 2x^3-4
\lim\:_{x\to\:-1}(2x^{3}-4)
inverse oflaplace (12)/((3s-5))
inverselaplace\:\frac{12}{(3s-5)}
integral of 1/(n^3)
\int\:\frac{1}{n^{3}}
slope of (-5,-8),(5,2)
slope\:(-5,-8),(5,2)
limit as x approaches infinity of 3+4/x
\lim\:_{x\to\:\infty\:}(3+\frac{4}{x})
derivative of (6-xe^x/(x+e^x))
\frac{d}{dx}(\frac{6-xe^{x}}{x+e^{x}})
integral of (3x^2)/(x^2+7)
\int\:\frac{3x^{2}}{x^{2}+7}dx
derivative of f(x)=(3/(sqrt(x)))
derivative\:f(x)=(\frac{3}{\sqrt{x}})
(4-x)^'
(4-x)^{\prime\:}
integral from 0 to 9 of 9x-x^2
\int\:_{0}^{9}9x-x^{2}dx
limit as x approaches 5 of 3x
\lim\:_{x\to\:5}(3x)
derivative of h(x)=(sqrt(3))/(x^3+1)
derivative\:h(x)=\frac{\sqrt{3}}{x^{3}+1}
9(t+1)(dy)/(dt)-5y=20t
9(t+1)\frac{dy}{dt}-5y=20t
inverse oflaplace (-2e^s)/((s^2-2s-8))
inverselaplace\:\frac{-2e^{s}}{(s^{2}-2s-8)}
limit as x approaches infinity of (x)^x
\lim\:_{x\to\:\infty\:}((x)^{x})
integral of u/(1-u)
\int\:\frac{u}{1-u}du
integral of x^{-3}ln(5x)
\int\:x^{-3}\ln(5x)dx
sum from n=6 to infinity of e^{5-2n}
\sum\:_{n=6}^{\infty\:}e^{5-2n}
integral of 2+1/(1-x)
\int\:2+\frac{1}{1-x}dx
(\partial)/(\partial z)(z)
\frac{\partial\:}{\partial\:z}(z)
derivative of 3/((x-1))
derivative\:\frac{3}{(x-1)}
integral of (e^x-1)/(e^{2x)}
\int\:\frac{e^{x}-1}{e^{2x}}dx
derivative of y=-2x-1
derivative\:y=-2x-1
sum from n=1 to infinity of 1/(n+3^n)
\sum\:_{n=1}^{\infty\:}\frac{1}{n+3^{n}}
derivative of (e^x+1/(e^x-1))
\frac{d}{dx}(\frac{e^{x}+1}{e^{x}-1})
derivative of f(x)=9x^8e^x+e^xx^9
derivative\:f(x)=9x^{8}e^{x}+e^{x}x^{9}
derivative of (5+csc(x)/(9-csc(x)))
\frac{d}{dx}(\frac{5+\csc(x)}{9-\csc(x)})
y^'=x^4-1/x y
y^{\prime\:}=x^{4}-\frac{1}{x}y
integral from 0 to 1 of x^2ln(x)
\int\:_{0}^{1}x^{2}\ln(x)dx
derivative of 1/((1-x^6^{3/2)})
\frac{d}{dx}(\frac{1}{(1-x^{6})^{\frac{3}{2}}})
integral from 0 to N of e^{-st}e^{-3t}
\int\:_{0}^{N}e^{-st}e^{-3t}dt
y^'-(4x-y+1)^2=0
y^{\prime\:}-(4x-y+1)^{2}=0
derivative of 1/0
\frac{d}{dx}(\frac{1}{0})
integral of sin(2)
\int\:\sin(2)dx
(dy}{dx}+\frac{3y)/x+2=3x
\frac{dy}{dx}+\frac{3y}{x}+2=3x
12x^2y+y^'=5x^2
12x^{2}y+y^{\prime\:}=5x^{2}
derivative of f(x)=sqrt(cos(2x))
derivative\:f(x)=\sqrt{\cos(2x)}
integral of (x+2)^{1/2}
\int\:(x+2)^{\frac{1}{2}}dx
integral from 0 to 6 of x^3
\int\:_{0}^{6}x^{3}dx
limit as n approaches infinity of n^{-3}
\lim\:_{n\to\:\infty\:}(n^{-3})
(\partial)/(\partial x)(cos(xy)-1-sin(y))
\frac{\partial\:}{\partial\:x}(\cos(xy)-1-\sin(y))
y^'=-7yln((10)/y)
y^{\prime\:}=-7y\ln(\frac{10}{y})
derivative of x^2+6x-16
\frac{d}{dx}(x^{2}+6x-16)
(\partial)/(\partial h)(pir^2h)
\frac{\partial\:}{\partial\:h}(πr^{2}h)
(\partial)/(\partial x)(sin(x)sin(y))
\frac{\partial\:}{\partial\:x}(\sin(x)\sin(y))
(x*(dy)/(dx)-y)cos(y/x)+x=0
(x\cdot\:\frac{dy}{dx}-y)\cos(\frac{y}{x})+x=0
integral of (x^6+2x^4+6x-9)/(x^3+3)
\int\:\frac{x^{6}+2x^{4}+6x-9}{x^{3}+3}dx
derivative of 6/((1-x)^3)
derivative\:\frac{6}{(1-x)^{3}}
limit as k approaches infinity of (-1)^k
\lim\:_{k\to\:\infty\:}((-1)^{k})
limit as x approaches infinity of 7x^2
\lim\:_{x\to\:\infty\:}(7x^{2})
f^'(x)=(3x^6+4x^3)^4
f^{\prime\:}(x)=(3x^{6}+4x^{3})^{4}
tangent of x^3+8,\at x=-2
tangent\:x^{3}+8,\at\:x=-2
integral of (3x^3-5x^2+10x-3)/(3x+1)
\int\:\frac{3x^{3}-5x^{2}+10x-3}{3x+1}dx
(\partial)/(\partial y)(x*y)
\frac{\partial\:}{\partial\:y}(x\cdot\:y)
laplacetransform (2(t-2)^2)+10(t-2)+15
laplacetransform\:(2(t-2)^{2})+10(t-2)+15
integral of 1/(x(ln(x))^8)
\int\:\frac{1}{x(\ln(x))^{8}}dx
integral of (2+x+sqrt(x))/x
\int\:\frac{2+x+\sqrt{x}}{x}dx
(sec(x))^'
(\sec(x))^{\prime\:}
derivative of 0.334*sin(0.3494x-0.06988)
derivative\:0.334\cdot\:\sin(0.3494x-0.06988)
derivative of sqrt(6+sec(pix^2))
\frac{d}{dx}(\sqrt{6+\sec(π)x^{2}})
area sin(x),[0,pi]
area\:\sin(x),[0,π]
integral of e^{cos(3t)}sin(3t)
\int\:e^{\cos(3t)}\sin(3t)dt
y^{''}+2y^'+12y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+2y^{\prime\:}+12y=0,y(0)=1,y^{\prime\:}(0)=0
limit as x approaches 1-of 3x^2-4x+4
\lim\:_{x\to\:1-}(3x^{2}-4x+4)
integral of (ln(x+1))/(x+1)
\int\:\frac{\ln(x+1)}{x+1}dx
y^'=y(y-3),y(0)=a
y^{\prime\:}=y(y-3),y(0)=a
sum from n=0 to infinity of (nx^n)/(n+2)
\sum\:_{n=0}^{\infty\:}\frac{nx^{n}}{n+2}
f(x)=5^{x^2}
f(x)=5^{x^{2}}
(\partial)/(\partial y)(1/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{1}{x+y})
(dy)/(dx)=-((x+6))/(7y^2)
\frac{dy}{dx}=-\frac{(x+6)}{7y^{2}}
(dθ)/(dt)=40-2/5 (θ-15)
\frac{dθ}{dt}=40-\frac{2}{5}(θ-15)
y^{''}+4y^'=0,y(0)=1,y^'(0)=1
y^{\prime\:\prime\:}+4y^{\prime\:}=0,y(0)=1,y^{\prime\:}(0)=1
derivative of f(x)=(9x^2-15x)e^x
derivative\:f(x)=(9x^{2}-15x)e^{x}
integral of sin(x)cos(x)ln(sin(x))
\int\:\sin(x)\cos(x)\ln(\sin(x))dx
y^{''}-3y^'+2y=0,y(0)=1,y^'(0)=-7/3
y^{\prime\:\prime\:}-3y^{\prime\:}+2y=0,y(0)=1,y^{\prime\:}(0)=-\frac{7}{3}
integral from 0 to 1 of sqrt(4-x^2)
\int\:_{0}^{1}\sqrt{4-x^{2}}dx
integral of 9/(x^4)
\int\:\frac{9}{x^{4}}dx
tangent of y=(sqrt(x))/(x+1),(4, 2/5)
tangent\:y=\frac{\sqrt{x}}{x+1},(4,\frac{2}{5})
limit as x approaches 0 of cos(x^2)
\lim\:_{x\to\:0}(\cos(x^{2}))
area 7x-x^2,2x
area\:7x-x^{2},2x
derivative of f(x)= 1/2 (x+1)^{-1/2}
derivative\:f(x)=\frac{1}{2}(x+1)^{-\frac{1}{2}}
sum from n=1 to infinity of (1/5)^n
\sum\:_{n=1}^{\infty\:}(\frac{1}{5})^{n}
derivative of (x+1/(2-x))
\frac{d}{dx}(\frac{x+1}{2-x})
u'(x)
u\prime\:(x)
derivative of e^{cos(3x)}
derivative\:e^{\cos(3x)}
limit as x approaches-3 of-3/(x+3)
\lim\:_{x\to\:-3}(-\frac{3}{x+3})
derivative of x^4
derivative\:x^{4}
y^{''}+4y^'-y=0
y^{\prime\:\prime\:}+4y^{\prime\:}-y=0
integral from 0 to 2pi of sin^2(10x)
\int\:_{0}^{2π}\sin^{2}(10x)dx
1
..
213
214
215
216
217
..
2459