Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of 3ae^{3x}
\frac{d}{dx}(3ae^{3x})
derivative of f(x)=1+x
derivative\:f(x)=1+x
area y^2=2x+1,y=x-1
area\:y^{2}=2x+1,y=x-1
integral of cos(Inx)
\int\:\cos(Inx)dx
integral of t^8e^{-t^9}
\int\:t^{8}e^{-t^{9}}dt
y^'+y=e^{(-t)}
y^{\prime\:}+y=e^{(-t)}
integral of 1/((x+3)(x-3))
\int\:\frac{1}{(x+3)(x-3)}dx
derivative of x-3sin(x)
\frac{d}{dx}(x-3\sin(x))
integral of (e^u)/((4-e^u)^2)
\int\:\frac{e^{u}}{(4-e^{u})^{2}}du
(dy)/(dx)=y^2e^{-x}
\frac{dy}{dx}=y^{2}e^{-x}
integral of x*x^{20}
\int\:x\cdot\:x^{20}dx
laplacetransform t^2e^{-2t}
laplacetransform\:t^{2}e^{-2t}
limit as x approaches 0 of e^0cos(4)(0)
\lim\:_{x\to\:0}(e^{0}\cos(4)(0))
limit as x approaches 3 of 4e^{x-3}
\lim\:_{x\to\:3}(4e^{x-3})
limit as t approaches 0 of e^{2t}
\lim\:_{t\to\:0}(e^{2t})
derivative of x^2-sin^2(x)
\frac{d}{dx}(x^{2}-\sin^{2}(x))
y^'=e^{2x}(1+y^2)
y^{\prime\:}=e^{2x}(1+y^{2})
derivative of xcos(x+3pi)
\frac{d}{dx}(x\cos(x)+3π)
integral of y^2-2x
\int\:y^{2}-2xdx
integral of xe^{-8x}
\int\:xe^{-8x}dx
integral of \sqrt[3]{x}ln(x^5)
\int\:\sqrt[3]{x}\ln(x^{5})dx
limit as x approaches-infinity of x+1
\lim\:_{x\to\:-\infty\:}(x+1)
area 3x^3-x^2-10x,-x^2+2x
area\:3x^{3}-x^{2}-10x,-x^{2}+2x
derivative of 3x^4+2x^{1/3}-1/(x^2)
\frac{d}{dx}(3x^{4}+2x^{\frac{1}{3}}-\frac{1}{x^{2}})
integral of (-11x-24)/(125(x^2+4x+5))
\int\:\frac{-11x-24}{125(x^{2}+4x+5)}dx
sum from n=1 to infinity of 2/(5^{n+2)}
\sum\:_{n=1}^{\infty\:}\frac{2}{5^{n+2}}
derivative of (e^{x^2}+3e^x/(e^x))
\frac{d}{dx}(\frac{e^{x^{2}}+3e^{x}}{e^{x}})
integral of (5x)/(sqrt(2-x^4))
\int\:\frac{5x}{\sqrt{2-x^{4}}}dx
integral of 12\sqrt[3]{81-9x}-36
\int\:12\sqrt[3]{81-9x}-36dx
integral of (ln(t))/(t^3)
\int\:\frac{\ln(t)}{t^{3}}dt
integral of sech^2(x)tanh(x)
\int\:\sech^{2}(x)\tanh(x)dx
limit as x approaches 3-of 2/(x^2-9)
\lim\:_{x\to\:3-}(\frac{2}{x^{2}-9})
derivative of e^{9-x}
derivative\:e^{9-x}
y^{''}+25y=cos(6t)
y^{\prime\:\prime\:}+25y=\cos(6t)
integral of (1/(sin^2(x)))
\int\:(\frac{1}{\sin^{2}(x)})dx
integral of (5x^2)/((x-1)(x^2+9))
\int\:\frac{5x^{2}}{(x-1)(x^{2}+9)}dx
limit as x approaches 3 of x^2-5x
\lim\:_{x\to\:3}(x^{2}-5x)
d/(ds)(s^2{y}(s)-1)
\frac{d}{ds}(s^{2}{y}(s)-1)
derivative of f(x)=x^2-2x+1
derivative\:f(x)=x^{2}-2x+1
derivative of e^{-0.4x}
\frac{d}{dx}(e^{-0.4x})
derivative of \sqrt[3]{(4x^3+2x^5})
\frac{d}{dx}(\sqrt[3]{(4x^{3}+2x)^{5}})
derivative of 6sqrt(t)-2/(sqrt(t))
derivative\:6\sqrt{t}-\frac{2}{\sqrt{t}}
derivative of 1/3 x^3-1/2 x^2-6x
\frac{d}{dx}(\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-6x)
inverse oflaplace (3s+17)/(s^2+s+1)
inverselaplace\:\frac{3s+17}{s^{2}+s+1}
integral of (x^2-7)^4(2x)
\int\:(x^{2}-7)^{4}(2x)dx
t^2y^{''}+19ty^'+106y=0
t^{2}y^{\prime\:\prime\:}+19ty^{\prime\:}+106y=0
limit as x approaches 0 of tan(1/x)
\lim\:_{x\to\:0}(\tan(\frac{1}{x}))
tangent of f(x)=x^{-2},\at x=-2
tangent\:f(x)=x^{-2},\at\:x=-2
(\partial)/(\partial p)(((p+q))/(p+r))
\frac{\partial\:}{\partial\:p}(\frac{(p+q)}{p+r})
limit as x approaches 0 of (sin(4x))/(cos(5x))
\lim\:_{x\to\:0}(\frac{\sin(4x)}{\cos(5x)})
derivative of-3x^3+2x^2+5x-2
\frac{d}{dx}(-3x^{3}+2x^{2}+5x-2)
limit as x approaches 0 of (x^2)sin(1/x)
\lim\:_{x\to\:0}((x^{2})\sin(\frac{1}{x}))
integral of (x^2+x+1)/(x^3+2x^2)
\int\:\frac{x^{2}+x+1}{x^{3}+2x^{2}}dx
(\partial)/(\partial y)(xe^xcos(y))
\frac{\partial\:}{\partial\:y}(xe^{x}\cos(y))
f(x)=2sin(2x)-ln(3x+1)
f(x)=2\sin(2x)-\ln(3x+1)
integral of cos(x)-cos^2(x)
\int\:\cos(x)-\cos^{2}(x)dx
integral from 2 to 4 of 2pix(-3/2 x+6)
\int\:_{2}^{4}2πx(-\frac{3}{2}x+6)dx
integral of x/2 e^{-x/2}
\int\:\frac{x}{2}e^{-\frac{x}{2}}dx
(1+x^2)*(dy)/(dx)-(4x^3y)/(1-x^2)=1
(1+x^{2})\cdot\:\frac{dy}{dx}-\frac{4x^{3}y}{1-x^{2}}=1
integral from 0 to 1 of (15sqrt(5x+4))/2
\int\:_{0}^{1}\frac{15\sqrt{5x+4}}{2}dx
(dy)/(dx)-7y=e^x
\frac{dy}{dx}-7y=e^{x}
y^'=(11x^2-1)/(11+4y)
y^{\prime\:}=\frac{11x^{2}-1}{11+4y}
derivative of h(t)=(t+1)^{2/3}(2t^2-5)^3
derivative\:h(t)=(t+1)^{\frac{2}{3}}(2t^{2}-5)^{3}
tangent of f(x)=(7x)/(3+x^2),\at x=2
tangent\:f(x)=\frac{7x}{3+x^{2}},\at\:x=2
limit as x approaches 1 of-1/((x-1)^2)
\lim\:_{x\to\:1}(-\frac{1}{(x-1)^{2}})
tangent of y=(-6x)/(x^2+1),(0,0)
tangent\:y=\frac{-6x}{x^{2}+1},(0,0)
derivative of f(x)=4x^2-x
derivative\:f(x)=4x^{2}-x
integral of 1/(9x)
\int\:\frac{1}{9x}dx
integral of (x^2)/(sqrt(x^2-4x+20))
\int\:\frac{x^{2}}{\sqrt{x^{2}-4x+20}}dx
area 7e^x,7xe^{x^2},1,7e
area\:7e^{x},7xe^{x^{2}},1,7e
tangent of f(x)= x/((1+x^2)),\at x=2
tangent\:f(x)=\frac{x}{(1+x^{2})},\at\:x=2
derivative of 3/(x^6-1/(x^4)+5)
\frac{d}{dx}(\frac{3}{x^{6}}-\frac{1}{x^{4}}+5)
derivative of f(x)=(3x^2+2)(8x^3-3)
derivative\:f(x)=(3x^{2}+2)(8x^{3}-3)
derivative of y=5e^x+8/(\sqrt[3]{x)}
derivative\:y=5e^{x}+\frac{8}{\sqrt[3]{x}}
(dy)/(dx)=5yx
\frac{dy}{dx}=5yx
integral of (30)/((x+1)(x^2+9)^2)
\int\:\frac{30}{(x+1)(x^{2}+9)^{2}}dx
integral of sqrt(8-x^2)
\int\:\sqrt{8-x^{2}}dx
limit as x approaches 1 of 3x^2+3x-1
\lim\:_{x\to\:1}(3x^{2}+3x-1)
integral of ln(x-4)
\int\:\ln(x-4)dx
derivative of (\sqrt[3]{x}/({f)(x)})
\frac{d}{dx}(\frac{\sqrt[3]{x}}{{f}(x)})
limit as x approaches 1+of x^{1/(x-1)}
\lim\:_{x\to\:1+}(x^{\frac{1}{x-1}})
implicit (dy)/(dx),xy=7
implicit\:\frac{dy}{dx},xy=7
integral of (2x^2)/(x^2-1)
\int\:\frac{2x^{2}}{x^{2}-1}dx
(dy)/(dx)=e^{4x}+9y
\frac{dy}{dx}=e^{4x}+9y
derivative of y= 1/(\sqrt[3]{e^x)}
derivative\:y=\frac{1}{\sqrt[3]{e^{x}}}
integral of 2x^4e^{x^5}
\int\:2x^{4}e^{x^{5}}dx
tangent of f(x)=x^2+6,\at x=-7
tangent\:f(x)=x^{2}+6,\at\:x=-7
integral from-2 to-1 of cos(n*pi/2*x)
\int\:_{-2}^{-1}\cos(n\cdot\:\frac{π}{2}\cdot\:x)dx
limit as x approaches 4 of \sqrt[3]{x}
\lim\:_{x\to\:4}(\sqrt[3]{x})
limit as x approaches 5+of (x+2)/(5-x)
\lim\:_{x\to\:5+}(\frac{x+2}{5-x})
integral of 2x*sin(x)*e^x
\int\:2x\cdot\:\sin(x)\cdot\:e^{x}dx
integral of 1/(xsqrt(5+x^2))
\int\:\frac{1}{x\sqrt{5+x^{2}}}dx
derivative of 5xsin(4pix)
\frac{d}{dx}(5x\sin(4π)x)
integral of 3x^2y^{-2}+2xy^{-1}
\int\:3x^{2}y^{-2}+2xy^{-1}dx
integral of sin^4(1/2 x)cos^4(1/2 x)
\int\:\sin^{4}(\frac{1}{2}x)\cos^{4}(\frac{1}{2}x)dx
f(t)=4cos(t)
f(t)=4\cos(t)
(y^3-x^3)y^'(x)=3x^2y+1,y(-2)=-1
(y^{3}-x^{3})y^{\prime\:}(x)=3x^{2}y+1,y(-2)=-1
y^'=-(1+y)/(1+x+y)
y^{\prime\:}=-\frac{1+y}{1+x+y}
(dy)/(dx)=7y(7-y)
\frac{dy}{dx}=7y(7-y)
derivative of (5x^3+9x^2)/x
derivative\:\frac{5x^{3}+9x^{2}}{x}
1
..
426
427
428
429
430
..
2459