Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches infinity of-3/x
\lim\:_{x\to\:\infty\:}(-\frac{3}{x})
y^'+3(tan(3x))y=-2cos(3x)
y^{\prime\:}+3(\tan(3x))y=-2\cos(3x)
integral from 0 to 7 of (5t)/((t-8)^2)
\int\:_{0}^{7}\frac{5t}{(t-8)^{2}}dt
(\partial)/(\partial x)(e^{(-0.1xy)})
\frac{\partial\:}{\partial\:x}(e^{(-0.1xy)})
(\partial)/(\partial x)(e^xcos(y)+yz)
\frac{\partial\:}{\partial\:x}(e^{x}\cos(y)+yz)
derivative of (x(x+10)/((x+5)^2))
\frac{d}{dx}(\frac{x(x+10)}{(x+5)^{2}})
limit as x approaches 1 of (2x-3)*(x+1)
\lim\:_{x\to\:1}((2x-3)\cdot\:(x+1))
y^{''}+1.5y^'-y=12x^2+6x^3-x^4
y^{\prime\:\prime\:}+1.5y^{\prime\:}-y=12x^{2}+6x^{3}-x^{4}
derivative of e^{mt}*sin(nt)
\frac{d}{dx}(e^{mt}\cdot\:\sin(nt))
derivative of f(x)=3cos(2ln(x))
derivative\:f(x)=3\cos(2\ln(x))
x(dy)/(dx)+y=sqrt(x)
x\frac{dy}{dx}+y=\sqrt{x}
y^'+6y=e^{4t},y(0)=2
y^{\prime\:}+6y=e^{4t},y(0)=2
integral of (x^2)/(sqrt(20-4x+x^2))
\int\:\frac{x^{2}}{\sqrt{20-4x+x^{2}}}dx
derivative of 0.5sin^2(x-x+1)
\frac{d}{dx}(0.5\sin^{2}(x)-x+1)
inverse oflaplace 4/((s+1)^2)
inverselaplace\:\frac{4}{(s+1)^{2}}
t*y^'+ty=1-y
t\cdot\:y^{\prime\:}+ty=1-y
laplacetransform t^2*e^{a*t}
laplacetransform\:t^{2}\cdot\:e^{a\cdot\:t}
t^2y^{''}+19ty^'+81y=0
t^{2}y^{\prime\:\prime\:}+19ty^{\prime\:}+81y=0
integral of sqrt(1+cot^2(x))
\int\:\sqrt{1+\cot^{2}(x)}dx
integral from 0 to 5 of |15-5t|
\int\:_{0}^{5}\left|15-5t\right|dt
derivative of f(xx^'(x))
\frac{d}{dx}(f(x)x^{\prime\:}(x))
(\partial)/(\partial x)(ln(8x^2+3y^2+3))
\frac{\partial\:}{\partial\:x}(\ln(8x^{2}+3y^{2}+3))
integral of (10x^4-9x^2)/(2x^5-3x^3+14)
\int\:\frac{10x^{4}-9x^{2}}{2x^{5}-3x^{3}+14}dx
y^{'''}+3y^{''}+3y^'+y=0
y^{\prime\:\prime\:\prime\:}+3y^{\prime\:\prime\:}+3y^{\prime\:}+y=0
(\partial)/(\partial x)((5y)/(x^3))
\frac{\partial\:}{\partial\:x}(\frac{5y}{x^{3}})
y^{''}-9y^'+18y=5sin(4t),y(0)=5,y^'(0)=2
y^{\prime\:\prime\:}-9y^{\prime\:}+18y=5\sin(4t),y(0)=5,y^{\prime\:}(0)=2
taylor xe^{-3x}
taylor\:xe^{-3x}
integral of e^xsqrt(81-e^{2x)}
\int\:e^{x}\sqrt{81-e^{2x}}dx
y^'-y=3te^{2t}
y^{\prime\:}-y=3te^{2t}
(\partial)/(\partial x)(sqrt(3x+2y))
\frac{\partial\:}{\partial\:x}(\sqrt{3x+2y})
integral of 1/(sqrt(9x^2+6x-8))
\int\:\frac{1}{\sqrt{9x^{2}+6x-8}}dx
sum from n=0 to infinity of n 1/(5^n)
\sum\:_{n=0}^{\infty\:}n\frac{1}{5^{n}}
integral of sec^2(3xta)n^53x
\int\:\sec^{2}(3xta)n^{5}3xdx
yln(x)(dy}{dx}=(\frac{(y+1))/x)^2
y\ln(x)\frac{dy}{dx}=(\frac{(y+1)}{x})^{2}
derivative of (x^2-7)^2
derivative\:(x^{2}-7)^{2}
(\partial)/(\partial x)(ln(cos^2(x)+1))
\frac{\partial\:}{\partial\:x}(\ln(\cos^{2}(x)+1))
tangent of f(x)= x/((5x-4)^8),\at x=1
tangent\:f(x)=\frac{x}{(5x-4)^{8}},\at\:x=1
slope of (-2.2)(5.3)
slope\:(-2.2)(5.3)
tangent of y=x(x+1)^5,(1,32)
tangent\:y=x(x+1)^{5},(1,32)
integral from 3/4 to 1 of 2x
\int\:_{\frac{3}{4}}^{1}2xdx
(dy)/(dx)+y^9x+6y=0
\frac{dy}{dx}+y^{9}x+6y=0
y^{''}+2y^'+y=e-tln(t)
y^{\prime\:\prime\:}+2y^{\prime\:}+y=e-t\ln(t)
(\partial)/(\partial y)(((x-y))/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{(x-y)}{x+y})
integral from-1 to 2 of (x^2-1)
\int\:_{-1}^{2}(x^{2}-1)dx
limit as x approaches 2 of 3/((x-2)^3)
\lim\:_{x\to\:2}(\frac{3}{(x-2)^{3}})
integral of (e^{2x})/((e^{2x)+1)^3}
\int\:\frac{e^{2x}}{(e^{2x}+1)^{3}}dx
derivative of log_{5}(sin^2(x))
\frac{d}{dx}(\log_{5}(\sin^{2}(x)))
integral of sqrt(441-x^2)
\int\:\sqrt{441-x^{2}}dx
limit as x approaches 0-of (x+1)/(x^2)
\lim\:_{x\to\:0-}(\frac{x+1}{x^{2}})
integral of 17sin^3(xco)s^2x
\int\:17\sin^{3}(xco)s^{2}xdx
(dy)/(dx)=10^{-21}*y^3
\frac{dy}{dx}=10^{-21}\cdot\:y^{3}
derivative of y=e^{arctan(3t^2)}
derivative\:y=e^{\arctan(3t^{2})}
derivative of 5xsin(pix)
\frac{d}{dx}(5x\sin(πx))
derivative of (3000/(x+3600x^{-1)})
\frac{d}{dx}(\frac{3000}{x+3600x^{-1}})
inverse oflaplace 9/(s(s^2+2s+9))
inverselaplace\:\frac{9}{s(s^{2}+2s+9)}
tangent of f(x)= 1/(x+1),(-2,-1)
tangent\:f(x)=\frac{1}{x+1},(-2,-1)
derivative of (6x^2+7x^4)
\frac{d}{dx}((6x^{2}+7x)^{4})
maclaurin e^{x^2+x}
maclaurin\:e^{x^{2}+x}
derivative of 3x^2y+y^3-3x^2-3y^2+2
\frac{d}{dx}(3x^{2}y+y^{3}-3x^{2}-3y^{2}+2)
integral of 3/(2x+7)
\int\:\frac{3}{2x+7}dx
integral from 1 to e of (1/x)
\int\:_{1}^{e}(\frac{1}{x})dx
derivative of 4e^{-4x}
\frac{d}{dx}(4e^{-4x})
integral of 3(2t+5)^3
\int\:3(2t+5)^{3}dt
derivative of arctan(ln(2x+1))
\frac{d}{dx}(\arctan(\ln(2x+1)))
integral of ((82x+8))/((9x+1)(x-1))
\int\:\frac{(82x+8)}{(9x+1)(x-1)}dx
y^'+2y=4t,y(0)=3
y^{\prime\:}+2y=4t,y(0)=3
derivative of x^{-1}
derivative\:x^{-1}
derivative of (9(5^x)/(x^5))
\frac{d}{dx}(\frac{9(5^{x})}{x^{5}})
y^{''}+2y^'+17y=0
y^{\prime\:\prime\:}+2y^{\prime\:}+17y=0
derivative of 1/(sqrt(x^2+9))
\frac{d}{dx}(\frac{1}{\sqrt{x^{2}+9}})
integral of (5x^2)/(x^2+7)
\int\:\frac{5x^{2}}{x^{2}+7}dx
integral of sin^3(ax)
\int\:\sin^{3}(ax)dx
area sin(x),sin(2x),[0, pi/3 ]
area\:\sin(x),\sin(2x),[0,\frac{π}{3}]
derivative of f(x)= 1/x-2x
derivative\:f(x)=\frac{1}{x}-2x
derivative of 3/4 x^2-5x^3
\frac{d}{dx}(\frac{3}{4}x^{2}-5x^{3})
integral of 1/(-2x)
\int\:\frac{1}{-2x}dx
laplacetransform cos^2(25t)
laplacetransform\:\cos^{2}(25t)
derivative of sqrt(5)x-sqrt(2x)
derivative\:\sqrt{5}x-\sqrt{2x}
derivative of cos(2/x)
derivative\:\cos(\frac{2}{x})
integral of sin(4x-2)
\int\:\sin(4x-2)dx
derivative of h(x)=xcos(x)+3pi
derivative\:h(x)=x\cos(x)+3π
limit as x approaches 4 of cos((pix)/3)
\lim\:_{x\to\:4}(\cos(\frac{πx}{3}))
integral of (4e^x)/(e^{2x)+6e^x+9}
\int\:\frac{4e^{x}}{e^{2x}+6e^{x}+9}dx
derivative of y=3.6sqrt(x)+500
derivative\:y=3.6\sqrt{x}+500
derivative of 2x^3-15x^2-36x
\frac{d}{dx}(2x^{3}-15x^{2}-36x)
derivative of-4e^{-5x^2}
derivative\:-4e^{-5x^{2}}
limit as x approaches 0 of tan(6x)
\lim\:_{x\to\:0}(\tan(6x))
(dy)/(dx)=2sec^2(x)
\frac{dy}{dx}=2\sec^{2}(x)
sum from n=0 to infinity of e^{-na}
\sum\:_{n=0}^{\infty\:}e^{-na}
derivative of 6^{sin(pix)}
derivative\:6^{\sin(πx)}
integral from 0 to infinity of te^{-t}
\int\:_{0}^{\infty\:}te^{-t}dt
tangent of x/(x^2+49)
tangent\:\frac{x}{x^{2}+49}
limit as t approaches 2 of (t^2-4)/(t-2)
\lim\:_{t\to\:2}(\frac{t^{2}-4}{t-2})
x^'+4x=te^{-4t}
x^{\prime\:}+4x=te^{-4t}
derivative of e^ysin(xy)
\frac{d}{dx}(e^{y}\sin(xy))
limit as x approaches-infinity of 2x-x^2
\lim\:_{x\to\:-\infty\:}(2x-x^{2})
integral of 2xsqrt(x^2-1)
\int\:2x\sqrt{x^{2}-1}dx
sum from n=0 to infinity of (-0.6)^n
\sum\:_{n=0}^{\infty\:}(-0.6)^{n}
derivative of (0.3(5^x))/(x^3)
derivative\:\frac{0.3(5^{x})}{x^{3}}
taylor cos(x^2),0
taylor\:\cos(x^{2}),0
1
..
464
465
466
467
468
..
2459