Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 1 of-6
\lim\:_{x\to\:1}(-6)
limit as x approaches-pi of cos(x+pi)-1
\lim\:_{x\to\:-π}(\cos(x+π)-1)
integral of 1/((4x^2-25)^2)
\int\:\frac{1}{(4x^{2}-25)^{2}}dx
area x-1,sqrt(2x+6),[-2,4]
area\:x-1,\sqrt{2x+6},[-2,4]
derivative of (2x/((x^2-3)^3))
\frac{d}{dx}(\frac{2x}{(x^{2}-3)^{3}})
3y^{''}-16y^'+5y=0,y(0)=-3,y^'(0)=4
3y^{\prime\:\prime\:}-16y^{\prime\:}+5y=0,y(0)=-3,y^{\prime\:}(0)=4
derivative of 1/((x-4)^2)
derivative\:\frac{1}{(x-4)^{2}}
derivative of f(x)=(3x^2+6x)^3
derivative\:f(x)=(3x^{2}+6x)^{3}
integral of 0.06x^2-4.4x+60
\int\:0.06x^{2}-4.4x+60dx
limit as x approaches 0 of 2xtan(3x)
\lim\:_{x\to\:0}(2x\tan(3x))
tangent of f(x)=x^3-2x^2-3x
tangent\:f(x)=x^{3}-2x^{2}-3x
integral from 1 to 8 of 1
\int\:_{1}^{8}1dx
integral from 0 to 1 of 7xe^{x^2}
\int\:_{0}^{1}7xe^{x^{2}}dx
y^{''}-6y^'+4y=0,y(0)=0,y^'(0)=1
y^{\prime\:\prime\:}-6y^{\prime\:}+4y=0,y(0)=0,y^{\prime\:}(0)=1
derivative of 2(3-x^2)^7
derivative\:2(3-x^{2})^{7}
derivative of sqrt(cos(2x))
\frac{d}{dx}(\sqrt{\cos(2x)})
integral of x/(sqrt(3-4x^2))
\int\:\frac{x}{\sqrt{3-4x^{2}}}dx
limit as x approaches infinity of 91
\lim\:_{x\to\:\infty\:}(91)
integral of (2x)/(x^2+sqrt(2)x+1)
\int\:\frac{2x}{x^{2}+\sqrt{2}x+1}dx
integral of (12x+5)
\int\:(12x+5)dx
(x^2+1)(dy)/(dx)+8x(y-1)=0
(x^{2}+1)\frac{dy}{dx}+8x(y-1)=0
integral of (40x^2)/(x^4-52x^2+576)
\int\:\frac{40x^{2}}{x^{4}-52x^{2}+576}dx
slope of (2,3),(-2,-3)
slope\:(2,3),(-2,-3)
derivative of 4/(2x+1)
\frac{d}{dx}(\frac{4}{2x+1})
tangent of f(x)=2x^2+x-1,\at x=0
tangent\:f(x)=2x^{2}+x-1,\at\:x=0
derivative of log_{10}(x/(sqrt(x^2+1)))
\frac{d}{dx}(\log_{10}(\frac{x}{\sqrt{x^{2}+1}}))
(\partial)/(\partial x)(sqrt(15-2x^2-y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{15-2x^{2}-y^{2}})
derivative of (3+x^4)^{4/5}
derivative\:(3+x^{4})^{\frac{4}{5}}
limit as x approaches 0+of (10)/(x^2)
\lim\:_{x\to\:0+}(\frac{10}{x^{2}})
derivative of f(x)=17e^x-ex^e
derivative\:f(x)=17e^{x}-ex^{e}
derivative of f(x)= x/(x+2)
derivative\:f(x)=\frac{x}{x+2}
(dy)/(dt)=9t^2
\frac{dy}{dt}=9t^{2}
limit as x approaches-2 of 3x^2-3x-8
\lim\:_{x\to\:-2}(3x^{2}-3x-8)
tangent of f(x)=6x-x^2,\at x=-1
tangent\:f(x)=6x-x^{2},\at\:x=-1
f^'(θ)=cos(θ)-sin(θ)
f^{\prime\:}(θ)=\cos(θ)-\sin(θ)
(\partial)/(\partial y)(4x^3y^3+4)
\frac{\partial\:}{\partial\:y}(4x^{3}y^{3}+4)
integral from-1 to 3 of |4-x^2|
\int\:_{-1}^{3}\left|4-x^{2}\right|dx
area y= 3/x ,y=7x,y= 1/7 x
area\:y=\frac{3}{x},y=7x,y=\frac{1}{7}x
derivative of f(x)=((x^2-6x))/(x+1)
derivative\:f(x)=\frac{(x^{2}-6x)}{x+1}
derivative of e^{x/a}
\frac{d}{dx}(e^{\frac{x}{a}})
integral of xe^{-1/2 x}
\int\:xe^{-\frac{1}{2}x}dx
limit as x approaches 2 of 10^{x^2-4x}
\lim\:_{x\to\:2}(10^{x^{2}-4x})
integral of ex^{e+1}
\int\:ex^{e+1}dx
f(x)=2xsqrt(1-x^2)
f(x)=2x\sqrt{1-x^{2}}
derivative of f(x)=(8x^2-13x)e^x
derivative\:f(x)=(8x^{2}-13x)e^{x}
integral from 0 to 5 of sqrt(25+x^2)
\int\:_{0}^{5}\sqrt{25+x^{2}}dx
integral of (sec^2(x))/(1+tan(x))
\int\:\frac{\sec^{2}(x)}{1+\tan(x)}dx
sum from n=1 to infinity of (3n)/(4n+1)
\sum\:_{n=1}^{\infty\:}\frac{3n}{4n+1}
((x+2)^{(2)}(dy))/((dx))=5-8y-4xy
\frac{(x+2)^{(2)}(dy)}{(dx)}=5-8y-4xy
integral of ((y-2))/(y+3)
\int\:\frac{(y-2)}{y+3}dy
integral from 0 to 0.6 of 2xe^{-x}
\int\:_{0}^{0.6}2xe^{-x}dx
y^'=2y
y^{\prime\:}=2y
(dy)/(dx)=y^{1/3}
\frac{dy}{dx}=y^{\frac{1}{3}}
tangent of sqrt(x^2+11),\at x=5
tangent\:\sqrt{x^{2}+11},\at\:x=5
derivative of t^{sqrt(13t)}
derivative\:t^{\sqrt{13t}}
derivative of sec(5x+1)
\frac{d}{dx}(\sec(5x)+1)
derivative of f(x)=4x^{5/4}+4x^{3/2}+8x
derivative\:f(x)=4x^{\frac{5}{4}}+4x^{\frac{3}{2}}+8x
(x-1)^3(dy)/(dx)+4(x-1)^2y=x+1
(x-1)^{3}\frac{dy}{dx}+4(x-1)^{2}y=x+1
y^'=-(1+x+y)/(1+x)
y^{\prime\:}=-\frac{1+x+y}{1+x}
integral of (cos(6x))/(1+sin^2(6x))
\int\:\frac{\cos(6x)}{1+\sin^{2}(6x)}dx
integral of 1/(9-5x)
\int\:\frac{1}{9-5x}dx
(x+ye^{y/x})dx-xe^{y/x}dy=0,y(0)=4
(x+ye^{\frac{y}{x}})dx-xe^{\frac{y}{x}}dy=0,y(0)=4
integral of sqrt(5x+7)
\int\:\sqrt{5x+7}dx
integral of 2x^2y
\int\:2x^{2}ydy
integral of-picsc((pix)/2)cot((pix)/2)
\int\:-π\csc(\frac{πx}{2})\cot(\frac{πx}{2})dx
derivative of (x^2/(3x-1))
\frac{d}{dx}(\frac{x^{2}}{3x-1})
(\partial)/(\partial x)(8^x)
\frac{\partial\:}{\partial\:x}(8^{x})
integral from 1 to sqrt(x of) 1/(1+t^2)
\int\:_{1}^{\sqrt{x}}\frac{1}{1+t^{2}}dt
derivative of e^x(3x^2-5x)
derivative\:e^{x}(3x^{2}-5x)
(dy)/(dx)=((-y^2))/((1+y^2))*(e^{-x})
\frac{dy}{dx}=\frac{(-y^{2})}{(1+y^{2})}\cdot\:(e^{-x})
derivative of-2sin(x-xcos(x))
\frac{d}{dx}(-2\sin(x)-x\cos(x))
integral of (e^{3sqrt(x)})/(sqrt(x))
\int\:\frac{e^{3\sqrt{x}}}{\sqrt{x}}dx
tangent of f(x)=(sqrt(x))/(x+1)
tangent\:f(x)=\frac{\sqrt{x}}{x+1}
limit as x approaches-2 of 1/((x+2)^5)
\lim\:_{x\to\:-2}(\frac{1}{(x+2)^{5}})
inverse oflaplace 1/(s(s^2+2s+3))
inverselaplace\:\frac{1}{s(s^{2}+2s+3)}
integral of (2x+3)/(x^2+9)
\int\:\frac{2x+3}{x^{2}+9}dx
derivative of y=ln(cos(x))
derivative\:y=\ln(\cos(x))
derivative of (ln(x^2-3)^3)
\frac{d}{dx}((\ln(x^{2}-3))^{3})
implicit (dy)/(dx),x^2+y^2=4
implicit\:\frac{dy}{dx},x^{2}+y^{2}=4
derivative of y=log_{3}(8x-1)
derivative\:y=\log_{3}(8x-1)
(d^2)/(dx^2)(sqrt(1+x^2))
\frac{d^{2}}{dx^{2}}(\sqrt{1+x^{2}})
y^'+y/(6960)=0.0025862069
y^{\prime\:}+\frac{y}{6960}=0.0025862069
derivative of e^{(-x})
\frac{d}{dx}(e^{(-x)})
integral of 3x
\int\:3xdx
derivative of (tan(x)^{sec(x)})
\frac{d}{dx}((\tan(x))^{\sec(x)})
integral of tan^2(y)+1
\int\:\tan^{2}(y)+1dy
(\partial)/(\partial x)(2x^2+y^2-4y+4)
\frac{\partial\:}{\partial\:x}(2x^{2}+y^{2}-4y+4)
area 0.5(e^x+e^{-x}),0<= x<= ln(2)
area\:0.5(e^{x}+e^{-x}),0\le\:x\le\:\ln(2)
derivative of (log_{10}(x)/(ln(x))+2x)
\frac{d}{dx}(\frac{\log_{10}(x)}{\ln(x)}+2x)
y^{''}+5y^'+6y=2e^x
y^{\prime\:\prime\:}+5y^{\prime\:}+6y=2e^{x}
derivative of in(sec(x))
\frac{d}{dx}(in(\sec(x)))
sum from n=1 to infinity of 2/(e^{n-3)}
\sum\:_{n=1}^{\infty\:}\frac{2}{e^{n-3}}
y^{''}-2/x y^'-4/(x^2)y=3x^2
y^{\prime\:\prime\:}-\frac{2}{x}y^{\prime\:}-\frac{4}{x^{2}}y=3x^{2}
limit as x approaches 1+of x^3-4
\lim\:_{x\to\:1+}(x^{3}-4)
limit as x approaches-1 of (2x)/(x+1)
\lim\:_{x\to\:-1}(\frac{2x}{x+1})
sum from n=1 to infinity of 3/(n^4)
\sum\:_{n=1}^{\infty\:}\frac{3}{n^{4}}
derivative of 1/(arctan(x))
\frac{d}{dx}(\frac{1}{\arctan(x)})
limit as h approaches 0 of ((1+h)^2-1)/h
\lim\:_{h\to\:0}(\frac{(1+h)^{2}-1}{h})
limit as x approaches 1 of 1+6x^2
\lim\:_{x\to\:1}(1+6x^{2})
tangent of y=(-8x)/(x^2+1),(1,-4)
tangent\:y=\frac{-8x}{x^{2}+1},(1,-4)
1
..
465
466
467
468
469
..
2459