Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 7-of (2x+1)/(x-7)
\lim\:_{x\to\:7-}(\frac{2x+1}{x-7})
limit as x approaches infinity of 1.07^x
\lim\:_{x\to\:\infty\:}(1.07^{x})
laplacetransform 3sin(t)-3cos(t)
laplacetransform\:3\sin(t)-3\cos(t)
tangent of f(x)=(4+x)/(x-2),\at x=8
tangent\:f(x)=\frac{4+x}{x-2},\at\:x=8
xyy^'=x^2+3y^2
xyy^{\prime\:}=x^{2}+3y^{2}
area 3x,xsqrt(64-x^2)
area\:3x,x\sqrt{64-x^{2}}
integral of x^{7/8}
\int\:x^{\frac{7}{8}}dx
derivative of (4x^2+72x)/(x-2)
derivative\:\frac{4x^{2}+72x}{x-2}
integral of pisin(pi)θ
\int\:π\sin(π)θdθ
limit as x approaches 0 of (tan(4x))^x
\lim\:_{x\to\:0}((\tan(4x))^{x})
y^{''}+4y^'+7y=0
y^{\prime\:\prime\:}+4y^{\prime\:}+7y=0
(\partial)/(\partial x)(xln(y+x))
\frac{\partial\:}{\partial\:x}(x\ln(y+x))
y^'=e(-2t)-y
y^{\prime\:}=e(-2t)-y
derivative of f(x)=(x^3+5x^2-3)sqrt(x)
derivative\:f(x)=(x^{3}+5x^{2}-3)\sqrt{x}
(cos(3x))^'
(\cos(3x))^{\prime\:}
derivative of e^x-1-x
\frac{d}{dx}(e^{x}-1-x)
(dy)/(dx)=e^{-x^2}
\frac{dy}{dx}=e^{-x^{2}}
integral of sech^6(x)tanh(x)
\int\:\sech^{6}(x)\tanh(x)dx
(\partial)/(\partial x)((x-y)/(x^2+y+1))
\frac{\partial\:}{\partial\:x}(\frac{x-y}{x^{2}+y+1})
integral from 0 to 3 of (2-x)e^x
\int\:_{0}^{3}(2-x)e^{x}dx
inverse oflaplace 8/((s+1)^2(s+2))
inverselaplace\:\frac{8}{(s+1)^{2}(s+2)}
integral of 1/((x-4)(x-1))
\int\:\frac{1}{(x-4)(x-1)}dx
integral from 2 to 3 of 7/(sqrt(3-x))
\int\:_{2}^{3}\frac{7}{\sqrt{3-x}}dx
derivative of ((sqrt(x^2-3x-4))/x)
\frac{d}{dx}(\frac{(\sqrt{x^{2}-3x-4})}{x})
limit as x approaches 0 of e^{ax}
\lim\:_{x\to\:0}(e^{ax})
derivative of (sqrt(t))/(2t-9)
derivative\:\frac{\sqrt{t}}{2t-9}
derivative of (6x^2+5)^3
derivative\:(6x^{2}+5)^{3}
derivative of x+2cos(x)
\frac{d}{dx}(x+2\cos(x))
integral of sec(3θ)tan(3θ)
\int\:\sec(3θ)\tan(3θ)dθ
derivative of 3t
derivative\:3t
(\partial)/(\partial y)(-xe^{xy})
\frac{\partial\:}{\partial\:y}(-xe^{xy})
(\partial)/(\partial x)(6x^7y^6+2x^5y^8)
\frac{\partial\:}{\partial\:x}(6x^{7}y^{6}+2x^{5}y^{8})
limit as x approaches 3 of x^2-9
\lim\:_{x\to\:3}(x^{2}-9)
integral of sin(1/2 x)
\int\:\sin(\frac{1}{2}x)dx
3y^{''}+11y^'+6y=3x^2+7x+3
3y^{\prime\:\prime\:}+11y^{\prime\:}+6y=3x^{2}+7x+3
integral from 1 to 3 of (3x^2-7)/(x^3)
\int\:_{1}^{3}\frac{3x^{2}-7}{x^{3}}dx
(dP)/(dt)=kP^{1.01},P(0)=10
\frac{dP}{dt}=kP^{1.01},P(0)=10
y^{''}+2y^'+5y=6sin(2t)
y^{\prime\:\prime\:}+2y^{\prime\:}+5y=6\sin(2t)
(d^2)/(dx^2)(cos(5x))
\frac{d^{2}}{dx^{2}}(\cos(5x))
limit as x approaches 0 of (a^x-b^x)/x
\lim\:_{x\to\:0}(\frac{a^{x}-b^{x}}{x})
normal of y=2x^2,(-2,8)
normal\:y=2x^{2},(-2,8)
integral from 0 to 5 of (t^2+2t-15)
\int\:_{0}^{5}(t^{2}+2t-15)dt
limit as t approaches 0 of 5/t-5/(e^t-1)
\lim\:_{t\to\:0}(\frac{5}{t}-\frac{5}{e^{t}-1})
area y=x^2-1,x=-2,x=1
area\:y=x^{2}-1,x=-2,x=1
integral of sqrt(1+(4/(\sqrt[3]{x)))^2}
\int\:\sqrt{1+(\frac{4}{\sqrt[3]{x}})^{2}}dx
derivative of 3(4-9x^4)
\frac{d}{dx}(3(4-9x)^{4})
integral of (7e^{7x})/(1+e^{7x)}
\int\:\frac{7e^{7x}}{1+e^{7x}}dx
limit as x approaches 0 of (tan(12x))/(sin(4x))
\lim\:_{x\to\:0}(\frac{\tan(12x)}{\sin(4x)})
(\partial)/(\partial x)(ye^x-x^2y^{-3})
\frac{\partial\:}{\partial\:x}(ye^{x}-x^{2}y^{-3})
tangent of y=(4x)/(x^2+1),(0,0)
tangent\:y=\frac{4x}{x^{2}+1},(0,0)
limit as x approaches-1 of x^2-2x+3
\lim\:_{x\to\:-1}(x^{2}-2x+3)
derivative of-(cos^4(x)/4)
\frac{d}{dx}(-\frac{\cos^{4}(x)}{4})
integral of 1-e^{-2x}
\int\:1-e^{-2x}dx
sin(x)sec(y)dx=dy
\sin(x)\sec(y)dx=dy
integral of (-1)/(sqrt(1-x^2))
\int\:\frac{-1}{\sqrt{1-x^{2}}}dx
derivative of (1+x/x)
\frac{d}{dx}(\frac{1+x}{x})
derivative of (a-b/x ^2)
\frac{d}{dx}((a-\frac{b}{x})^{2})
derivative of (2.4)/(sqrt(5+1x))
derivative\:\frac{2.4}{\sqrt{5+1x}}
integral of x/(4-x)
\int\:\frac{x}{4-x}dx
derivative of y=ln(ln(8x))
derivative\:y=\ln(\ln(8x))
derivative of e^{(e^x)}
derivative\:e^{(e^{x})}
derivative of y=((x^2+4)/(x^2-4))^3
derivative\:y=(\frac{x^{2}+4}{x^{2}-4})^{3}
limit as x approaches 6-of x/(x-6)
\lim\:_{x\to\:6-}(\frac{x}{x-6})
integral of 1/((x+2)(x+2))
\int\:\frac{1}{(x+2)(x+2)}dx
derivative of f(x)=sin^5(x)
derivative\:f(x)=\sin^{5}(x)
d/(dt)(arcsin(sqrt(2t)))
\frac{d}{dt}(\arcsin(\sqrt{2t}))
derivative of (x^4/5)
\frac{d}{dx}(\frac{x^{4}}{5})
tangent of f(x)=-x^3-3x^2-3,\at x=-3
tangent\:f(x)=-x^{3}-3x^{2}-3,\at\:x=-3
limit as x approaches-1 of (x+2)/(x^2+x)
\lim\:_{x\to\:-1}(\frac{x+2}{x^{2}+x})
integral of (2.286x-2.5(x-3)-3(x-5))
\int\:(2.286x-2.5(x-3)-3(x-5))dx
derivative of-6e^{-x^2}x
derivative\:-6e^{-x^{2}}x
integral of sqrt(1/x)
\int\:\sqrt{\frac{1}{x}}dx
area y=x^2+4,y=7-2x^2
area\:y=x^{2}+4,y=7-2x^{2}
integral from 1/2 to 1 of (2y+3)/(y^2+y)
\int\:_{\frac{1}{2}}^{1}\frac{2y+3}{y^{2}+y}dy
y^{''}+9y=cos(3t)
y^{\prime\:\prime\:}+9y=\cos(3t)
derivative of ln(x^6+x^3-6)
\frac{d}{dx}(\ln(x^{6}+x^{3}-6))
integral of x^2*sqrt(1+x)
\int\:x^{2}\cdot\:\sqrt{1+x}dx
(\partial)/(\partial x)(-e^{8y}cos(8x)*8)
\frac{\partial\:}{\partial\:x}(-e^{8y}\cos(8x)\cdot\:8)
derivative of y=tan(pix)
derivative\:y=\tan(πx)
derivative of 2xe^{2y}-xcos(xy+2y)
\frac{d}{dx}(2xe^{2y}-x\cos(xy)+2y)
limit as x approaches-2 of sqrt(6-3x)-3
\lim\:_{x\to\:-2}(\sqrt{6-3x}-3)
integral of (x^3)/(xln(x))
\int\:\frac{x^{3}}{x\ln(x)}dx
limit as x approaches 0+of e^{1/x}
\lim\:_{x\to\:0+}(e^{\frac{1}{x}})
integral of e^{-3t}
\int\:e^{-3t}dt
(\partial)/(\partial x)(z*e^{xyz})
\frac{\partial\:}{\partial\:x}(z\cdot\:e^{xyz})
y^'=6xy^2
y^{\prime\:}=6xy^{2}
derivative of x^3(x-5^2)
\frac{d}{dx}(x^{3}(x-5)^{2})
5yy^'=x
5yy^{\prime\:}=x
limit as h approaches infinity of (5h^4-2h^2+3)/(3h^3+2h^2+h)
\lim\:_{h\to\:\infty\:}(\frac{5h^{4}-2h^{2}+3}{3h^{3}+2h^{2}+h})
integral of (x^2+y^2)^{(-3/2)}
\int\:(x^{2}+y^{2})^{(-\frac{3}{2})}dy
(dy)/(dx)=2x(1+y)e^{x^2}
\frac{dy}{dx}=2x(1+y)e^{x^{2}}
derivative of y=2x^2+1
derivative\:y=2x^{2}+1
derivative of ((x+1^3)/3+1/(4x+4))
\frac{d}{dx}(\frac{(x+1)^{3}}{3}+\frac{1}{4x+4})
derivative of 3x^2e^x
derivative\:3x^{2}e^{x}
integral of 2sin(x)+x
\int\:2\sin(x)+xdx
derivative of 5x+3/x
\frac{d}{dx}(5x+\frac{3}{x})
limit as x approaches 0 of sin(x)ln(3x)
\lim\:_{x\to\:0}(\sin(x)\ln(3x))
(1/4 x^8-3e^x+100ln(x))^'
(\frac{1}{4}x^{8}-3e^{x}+100\ln(x))^{\prime\:}
derivative of 0.0125x^2-1.15x+22.85
\frac{d}{dx}(0.0125x^{2}-1.15x+22.85)
limit as x approaches 0 of (e^{5x}-1)/(x^2)
\lim\:_{x\to\:0}(\frac{e^{5x}-1}{x^{2}})
1
..
566
567
568
569
570
..
2459