Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 1 to 4 of 6/(x^2)
\int\:_{1}^{4}\frac{6}{x^{2}}dx
derivative of (x-1)^2e^x
derivative\:(x-1)^{2}e^{x}
derivative of (2x-1^2ln(2x-1))
\frac{d}{dx}((2x-1)^{2}\ln(2x-1))
derivative of f(x)=(sqrt(x))(3x-2)
derivative\:f(x)=(\sqrt{x})(3x-2)
(dy)/(dt)=3y+y^6,y(0)=1
\frac{dy}{dt}=3y+y^{6},y(0)=1
laplacetransform sin(t-2pi)
laplacetransform\:\sin(t-2π)
(dy)/(dx)(x^2+4)=xy
\frac{dy}{dx}(x^{2}+4)=xy
integral of 22
\int\:22dx
y^{''}-y^'-72y=0
y^{\prime\:\prime\:}-y^{\prime\:}-72y=0
derivative of ce^{3x}
\frac{d}{dx}(ce^{3x})
integral of (x+8)
\int\:(x+8)dx
integral of sqrt(x)ln(2x)
\int\:\sqrt{x}\ln(2x)dx
inverse oflaplace (2/s-1/(s^3))^2
inverselaplace\:(\frac{2}{s}-\frac{1}{s^{3}})^{2}
area y=sqrt(x+3),y=((x+3))/2
area\:y=\sqrt{x+3},y=\frac{(x+3)}{2}
(1-x^3)(dy)/(dx)=3x^2y
(1-x^{3})\frac{dy}{dx}=3x^{2}y
(\partial)/(\partial x)(8y)
\frac{\partial\:}{\partial\:x}(8y)
integral of x(x^2+4)
\int\:x(x^{2}+4)dx
integral of 3x^2+5
\int\:3x^{2}+5dx
(dv}{dt}=\frac{49-10v)/5
\frac{dv}{dt}=\frac{49-10v}{5}
(dy)/(dx)=y(y-1)
\frac{dy}{dx}=y(y-1)
area y=x,y=3x,y=-x+4
area\:y=x,y=3x,y=-x+4
(y+sqrt(xy))dx=xdy
(y+\sqrt{xy})dx=xdy
(\partial)/(\partial x)(sqrt((2x)/(x^2+1)))
\frac{\partial\:}{\partial\:x}(\sqrt{\frac{2x}{x^{2}+1}})
tangent of 12x^2+3x
tangent\:12x^{2}+3x
f(x)=4-5x^2
f(x)=4-5x^{2}
limit as x approaches a of sqrt(x-a)+c
\lim\:_{x\to\:a}(\sqrt{x-a}+c)
sum from n=1 to infinity of 1/(5^n)
\sum\:_{n=1}^{\infty\:}\frac{1}{5^{n}}
1/x*(dy)/(dx)+2y-e^{-x^2}=0,y(1)= 2/e
\frac{1}{x}\cdot\:\frac{dy}{dx}+2y-e^{-x^{2}}=0,y(1)=\frac{2}{e}
(\partial)/(\partial x)(log_{e}(x))
\frac{\partial\:}{\partial\:x}(\log_{e}(x))
limit as x approaches-2+of f(x)
\lim\:_{x\to\:-2+}(f(x))
integral of ae^{-ax}
\int\:ae^{-ax}dx
(x^3cos(x))^'
(x^{3}\cos(x))^{\prime\:}
integral of 1/(16x^4-8x^2+1)
\int\:\frac{1}{16x^{4}-8x^{2}+1}dx
sum from n=0 to infinity of (4n)/(8n+5)
\sum\:_{n=0}^{\infty\:}\frac{4n}{8n+5}
integral from 1 to 2 of (ln(x))/(x^3)
\int\:_{1}^{2}\frac{\ln(x)}{x^{3}}dx
integral of 1/((\frac{1){e^x}+1)}
\int\:\frac{1}{(\frac{1}{e^{x}}+1)}dx
normal of y=x^2-5x,(5,0)
normal\:y=x^{2}-5x,(5,0)
(\partial)/(\partial z)(yz^2-ln(x+z))
\frac{\partial\:}{\partial\:z}(yz^{2}-\ln(x+z))
factor 3x^6-6x^6y^7+4x^5y^4
factor\:3x^{6}-6x^{6}y^{7}+4x^{5}y^{4}
integral of 1/((4x^2-1)^{3/2)}
\int\:\frac{1}{(4x^{2}-1)^{\frac{3}{2}}}dx
integral from 1 to 3 of 5xe^x
\int\:_{1}^{3}5xe^{x}dx
derivative of f(x)=3x^6(x^4-7x)
derivative\:f(x)=3x^{6}(x^{4}-7x)
integral of sqrt(x^2-25)
\int\:\sqrt{x^{2}-25}dx
derivative of f(x)=(x+1/(\sqrt[3]{x)})^2
derivative\:f(x)=(x+\frac{1}{\sqrt[3]{x}})^{2}
limit as x approaches infinity of e^{-6x}cos(x)
\lim\:_{x\to\:\infty\:}(e^{-6x}\cos(x))
xy^2y^'=y^3-3x^3,y(1)=6
xy^{2}y^{\prime\:}=y^{3}-3x^{3},y(1)=6
area x=8y^2,x=2+6y^2
area\:x=8y^{2},x=2+6y^{2}
limit as x approaches-infinity of 10^x
\lim\:_{x\to\:-\infty\:}(10^{x})
(\partial)/(\partial x)(x^{-3}y^2+xy^2+5xy)
\frac{\partial\:}{\partial\:x}(x^{-3}y^{2}+xy^{2}+5xy)
integral of 1/(x-a)
\int\:\frac{1}{x-a}dx
inverse oflaplace 8/((z^2+4)^2)
inverselaplace\:\frac{8}{(z^{2}+4)^{2}}
integral of (x^2+8x)cos(x)
\int\:(x^{2}+8x)\cos(x)dx
derivative of sqrt(x^4)
\frac{d}{dx}(\sqrt{x^{4}})
derivative of (-x^2+x(-2x^2+4x-1))
\frac{d}{dx}((-x^{2}+x)(-2x^{2}+4x-1))
derivative of cos(x^2)(2x)
derivative\:\cos(x^{2})(2x)
sum from n=0 to infinity of (2n)/(e^n)
\sum\:_{n=0}^{\infty\:}\frac{2n}{e^{n}}
limit as x approaches 0 of ((x^2+4x))/x
\lim\:_{x\to\:0}(\frac{(x^{2}+4x)}{x})
(3x^2+y-4)-(2y-x)y^'=0
(3x^{2}+y-4)-(2y-x)y^{\prime\:}=0
2y*(dy)/(dx)=-x^2
2y\cdot\:\frac{dy}{dx}=-x^{2}
derivative of xk
\frac{d}{dx}(xk)
slope of (2,-3),(0,4)
slope\:(2,-3),(0,4)
implicit (dy)/(dx),xy=4
implicit\:\frac{dy}{dx},xy=4
limit as x approaches 3+of 5/(3-x)
\lim\:_{x\to\:3+}(\frac{5}{3-x})
xy^'=2x^3e^{3x}+2y
xy^{\prime\:}=2x^{3}e^{3x}+2y
integral of ((x-8))/(x^2-7x+10)
\int\:\frac{(x-8)}{x^{2}-7x+10}dx
y^{''}+2y^'+y=2e^x
y^{\prime\:\prime\:}+2y^{\prime\:}+y=2e^{x}
(\partial)/(\partial y)(e^{-2x^2-y^2})
\frac{\partial\:}{\partial\:y}(e^{-2x^{2}-y^{2}})
limit as x approaches-infinity of bx
\lim\:_{x\to\:-\infty\:}(bx)
derivative of ln(sec(x+tan(x)))
\frac{d}{dx}(\ln(\sec(x)+\tan(x)))
integral of 1200e^{0.3t}
\int\:1200e^{0.3t}dt
integral from 0 to 1 of 1/(9+16x^2)
\int\:_{0}^{1}\frac{1}{9+16x^{2}}dx
maclaurin x/((3-x)^3)
maclaurin\:\frac{x}{(3-x)^{3}}
integral from 0 to 7 of xe^{-x}
\int\:_{0}^{7}xe^{-x}dx
area x^2-1,-x+2,0,1
area\:x^{2}-1,-x+2,0,1
limit as x approaches infinity of xln(x)
\lim\:_{x\to\:\infty\:}(x\ln(x))
derivative of f(x)=((18x(x^2+6)^8))
derivative\:f(x)=((18x(x^{2}+6)^{8}))
derivative of (-cos(x)/(4x^2+2x-3))
\frac{d}{dx}(\frac{-\cos(x)}{4x^{2}+2x-3})
(dy)/(dt)+2y=3t^2+2t-1
\frac{dy}{dt}+2y=3t^{2}+2t-1
sum from n=1 to infinity of (8^n)/(n^4)
\sum\:_{n=1}^{\infty\:}\frac{8^{n}}{n^{4}}
integral from 0 to infinity of 1/(1+e^x)
\int\:_{0}^{\infty\:}\frac{1}{1+e^{x}}dx
(x+1)(dy)/(dx)+(x+2)y=4xe^{-x}
(x+1)\frac{dy}{dx}+(x+2)y=4xe^{-x}
integral of 3/(2t-5)
\int\:\frac{3}{2t-5}dt
integral of x/(16-x^4)
\int\:\frac{x}{16-x^{4}}dx
(\partial)/(\partial x)(x-xy+3)
\frac{\partial\:}{\partial\:x}(x-xy+3)
integral from 4 to 9 of (t-3)/(sqrt(t))
\int\:_{4}^{9}\frac{t-3}{\sqrt{t}}dt
limit as x approaches 0 of cos^2(5x)
\lim\:_{x\to\:0}(\cos^{2}(5x))
limit as x approaches-infinity of 6
\lim\:_{x\to\:-\infty\:}(6)
integral of (1/x)
\int\:(\frac{1}{x})dx
derivative of 2^x+x^2
\frac{d}{dx}(2^{x}+x^{2})
(\partial)/(\partial x)(4x^2+9y^2-45)
\frac{\partial\:}{\partial\:x}(4x^{2}+9y^{2}-45)
(\partial)/(\partial x)((4xy-7)^2)
\frac{\partial\:}{\partial\:x}((4xy-7)^{2})
derivative of (-2/((6x-7x^4)^3))
\frac{d}{dx}(\frac{-2}{(6x-7x^{4})^{3}})
integral of (8/(sqrt(x))+8sqrt(x))
\int\:(\frac{8}{\sqrt{x}}+8\sqrt{x})dx
derivative of xsec(xtan(x))
\frac{d}{dx}(x\sec(x)\tan(x))
derivative of f(x)=x+9/x
derivative\:f(x)=x+\frac{9}{x}
(\partial)/(\partial x)((xy)^z)
\frac{\partial\:}{\partial\:x}((xy)^{z})
integral of (x^3-x^2-4x+4)/(x^3-x^2-6x)
\int\:\frac{x^{3}-x^{2}-4x+4}{x^{3}-x^{2}-6x}dx
(\partial)/(\partial x)(e^{2y}cos(3x))
\frac{\partial\:}{\partial\:x}(e^{2y}\cos(3x))
inverse oflaplace 3
inverselaplace\:3
y^{''}-5y^'+6y=x*e^{(-4*x)}
y^{\prime\:\prime\:}-5y^{\prime\:}+6y=x\cdot\:e^{(-4\cdot\:x)}
1
..
588
589
590
591
592
..
2459