Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of 5/((2x^3))
\frac{d}{dx}(\frac{5}{(2x)^{3}})
(\partial)/(\partial x)(x^2-y^2)
\frac{\partial\:}{\partial\:x}(x^{2}-y^{2})
integral of (tan(x/(10)))^5
\int\:(\tan(\frac{x}{10}))^{5}dx
(1-e^{2y})(dy)/(dx)=e^y
(1-e^{2y})\frac{dy}{dx}=e^{y}
tangent of x^2+y^2=25,(-4,-3)
tangent\:x^{2}+y^{2}=25,(-4,-3)
integral of 2xsin(x^2)
\int\:2x\sin(x^{2})dx
y^'+(y^2)/x =-1/x
y^{\prime\:}+\frac{y^{2}}{x}=-\frac{1}{x}
integral of (x^2-1)/(x^2+x)
\int\:\frac{x^{2}-1}{x^{2}+x}dx
deg2rad (x'')^'
deg2rad\:(x\prime\:\prime\:)^{\prime\:}
y^{''}+a*y^'=b,y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}+a\cdot\:y^{\prime\:}=b,y(0)=0,y^{\prime\:}(0)=0
(dy)/(dx)=((2x+sec^2(x)))/(2y),y(0)=-6
\frac{dy}{dx}=\frac{(2x+\sec^{2}(x))}{2y},y(0)=-6
integral of (3x+5)/(x^2+1)
\int\:\frac{3x+5}{x^{2}+1}dx
integral of (3x^2-6x-4)/(x^3-3x^2-4x+12)
\int\:\frac{3x^{2}-6x-4}{x^{3}-3x^{2}-4x+12}dx
derivative of xsinh(x)
\frac{d}{dx}(x\sinh(x))
limit as x approaches 2+of (x^3-8)/(x-2)
\lim\:_{x\to\:2+}(\frac{x^{3}-8}{x-2})
integral of arccot(11y)
\int\:\arccot(11y)dy
derivative of f(x)=arctan(2x)
derivative\:f(x)=\arctan(2x)
derivative of (x+4(e^2x))
\frac{d}{dx}((x+4)(e^{2}x))
tangent of f(x)=(2x)/(x^2+1),\at x=1
tangent\:f(x)=\frac{2x}{x^{2}+1},\at\:x=1
integral of 2x(x^2+5)^3
\int\:2x(x^{2}+5)^{3}dx
limit as x approaches-1 of (6x+5)/(5x-6)
\lim\:_{x\to\:-1}(\frac{6x+5}{5x-6})
(\partial}{\partial x}(\frac{10\sqrt[3]{(5x)^2})/3)
\frac{\partial\:}{\partial\:x}(\frac{10\sqrt[3]{(5x)^{2}}}{3})
(dy}{dx}-\frac{2y)/x =x^{-1}y^{-1}
\frac{dy}{dx}-\frac{2y}{x}=x^{-1}y^{-1}
integral of ((cx)/((x^2+y^2)^{3/2)})
\int\:(\frac{cx}{(x^{2}+y^{2})^{\frac{3}{2}}})dx
derivative of 1/(x(ln(x)^{{p)(x)}})
\frac{d}{dx}(\frac{1}{x(\ln(x))^{{p}(x)}})
integral of 8sin^2(t+pi/(12))
\int\:8\sin^{2}(t+\frac{π}{12})dt
xy^'=y+6x^2sin(x),y(pi)=0
xy^{\prime\:}=y+6x^{2}\sin(x),y(π)=0
limit as x approaches-1 of x^2-3x-4
\lim\:_{x\to\:-1}(x^{2}-3x-4)
slope of P=x^3-7xP,(2,-6)
slope\:P=x^{3}-7xP,(2,-6)
limit as x approaches 4 of 3/((x-4)^2)
\lim\:_{x\to\:4}(\frac{3}{(x-4)^{2}})
integral of cos^4(1/2 x)
\int\:\cos^{4}(\frac{1}{2}x)dx
integral from 0 to 1 of 1/2 x^2
\int\:_{0}^{1}\frac{1}{2}x^{2}dx
derivative of sqrt(x-5)-100
derivative\:\sqrt{x-5}-100
slope of 1/(2sqrt(x-3))
slope\:\frac{1}{2\sqrt{x-3}}
integral of θ\sqrt[4]{1-θ^2}
\int\:θ\sqrt[4]{1-θ^{2}}dθ
inverse oflaplace 1/(s^2+9)
inverselaplace\:\frac{1}{s^{2}+9}
derivative of \sqrt[4]{x}-3/x
\frac{d}{dx}(\sqrt[4]{x}-\frac{3}{x})
(\partial)/(\partial x)(ln(x-2y))
\frac{\partial\:}{\partial\:x}(\ln(x-2y))
(\partial)/(\partial x)(sin(x/y))
\frac{\partial\:}{\partial\:x}(\sin(\frac{x}{y}))
d/(dt)((ln(2t-1))/(t^2-1))
\frac{d}{dt}(\frac{\ln(2t-1)}{t^{2}-1})
(\partial)/(\partial x)(2x^2-3xy+z-4)
\frac{\partial\:}{\partial\:x}(2x^{2}-3xy+z-4)
integral of (x^2-6x+9)
\int\:(x^{2}-6x+9)dx
integral of 2/(y^2)
\int\:\frac{2}{y^{2}}dy
integral from-1 to 1 of 1.5x^2
\int\:_{-1}^{1}1.5x^{2}dx
derivative of x^7+7x^2
\frac{d}{dx}(x^{7}+7x^{2})
integral of 1-1/2 x^4+1/24 x^8
\int\:1-\frac{1}{2}x^{4}+\frac{1}{24}x^{8}dx
limit as x approaches 0 of x(|x|)
\lim\:_{x\to\:0}(x(\left|x\right|))
tangent of f(x)= 6/(sqrt(x)),\at x=36
tangent\:f(x)=\frac{6}{\sqrt{x}},\at\:x=36
limit as x approaches 2 of (x-2)/(x^2-4)
\lim\:_{x\to\:2}(\frac{x-2}{x^{2}-4})
derivative of (cos(12x)/(e^{7x)})
\frac{d}{dx}(\frac{\cos(12x)}{e^{7x}})
integral of (sec^6(x))/(tan^2(x))
\int\:\frac{\sec^{6}(x)}{\tan^{2}(x)}dx
derivative of 9t-2t^2
derivative\:9t-2t^{2}
integral of 4x^{-2}
\int\:4x^{-2}dx
derivative of (2x/(1-x))
\frac{d}{dx}(\frac{2x}{1-x})
limit as x approaches 3 of 2x^2-3x
\lim\:_{x\to\:3}(2x^{2}-3x)
(dy)/(dx)=2sqrt(xy)
\frac{dy}{dx}=2\sqrt{xy}
derivative of ((x-1^2)/(x+2))
\frac{d}{dx}(\frac{(x-1)^{2}}{x+2})
integral of (e^{2x}+x)
\int\:(e^{2x}+x)dx
derivative of-0.0000272x^2+0.008459x+440
derivative\:-0.0000272x^{2}+0.008459x+440
limit as x approaches infinity of-(4x)/5
\lim\:_{x\to\:\infty\:}(-\frac{4x}{5})
(d^2)/(dx^2)((x^2)/(x-1))
\frac{d^{2}}{dx^{2}}(\frac{x^{2}}{x-1})
(\partial)/(\partial x)(sec(x))
\frac{\partial\:}{\partial\:x}(\sec(x))
integral of 2x(x^2+12)^3
\int\:2x(x^{2}+12)^{3}dx
integral of (2x+1)e^{0.4x}
\int\:(2x+1)e^{0.4x}dx
integral from-1 to 3 of (2x^3-10)
\int\:_{-1}^{3}(2x^{3}-10)dx
limit as x approaches 0 of (|-x^2|)/x
\lim\:_{x\to\:0}(\frac{\left|-x^{2}\right|}{x})
integral from 0 to 4 of 1/(sqrt(2t+1))
\int\:_{0}^{4}\frac{1}{\sqrt{2t+1}}dt
integral of 3/((x-1)^3)
\int\:\frac{3}{(x-1)^{3}}dx
derivative of arctan(x/8)
\frac{d}{dx}(\arctan(\frac{x}{8}))
integral of x^3(1/x+6x^2)
\int\:x^{3}(\frac{1}{x}+6x^{2})dx
integral of 7x^6sin(x^7)
\int\:7x^{6}\sin(x^{7})dx
integral of xsqrt(x^2-3)
\int\:x\sqrt{x^{2}-3}dx
inverse oflaplace 1/(s+2)
inverselaplace\:\frac{1}{s+2}
area 8x+6,x-x^2,-6,-1
area\:8x+6,x-x^{2},-6,-1
integral from-3 to 3 of (14)/(x^2-4x-45)
\int\:_{-3}^{3}\frac{14}{x^{2}-4x-45}dx
derivative of y=(3sqrt(x)+5)x^2
derivative\:y=(3\sqrt{x}+5)x^{2}
integral of (x^2+5x+6)/(x+3)
\int\:\frac{x^{2}+5x+6}{x+3}dx
area y=9-x^2,y=x+3
area\:y=9-x^{2},y=x+3
integral of sin(6x)
\int\:\sin(6x)dx
(-7sqrt(2)sin(t))^'
(-7\sqrt{2}\sin(t))^{\prime\:}
derivative of y=2x^3
derivative\:y=2x^{3}
derivative of {f}(x(x)^n)
\frac{d}{dx}({f}(x)(x)^{n})
integral of (x^5-x^3+6x)/(x^4)
\int\:\frac{x^{5}-x^{3}+6x}{x^{4}}dx
derivative of sin(3x^3+2)
\frac{d}{dx}(\sin(3x^{3}+2))
derivative of 2x+1/(x^2)
\frac{d}{dx}(2x+\frac{1}{x^{2}})
derivative of s(t)= 5/(\sqrt[4]{t)}
derivative\:s(t)=\frac{5}{\sqrt[4]{t}}
(\partial)/(\partial y)(e^{5xy})
\frac{\partial\:}{\partial\:y}(e^{5xy})
integral from 2 to infinity of e^{-8p}
\int\:_{2}^{\infty\:}e^{-8p}dp
sum from n=1 to infinity of (5/9)^n
\sum\:_{n=1}^{\infty\:}(\frac{5}{9})^{n}
integral of-1/2 ln|x|-8x+2x^2+C^1
\int\:-\frac{1}{2}\ln\left|x\right|-8x+2x^{2}+C^{1}dx
integral of tan^5(x)sec^2(x)
\int\:\tan^{5}(x)\sec^{2}(x)dx
limit as x approaches-3 of-sqrt(-x+4)
\lim\:_{x\to\:-3}(-\sqrt{-x+4})
(dy)/(dx)=yln(x)
\frac{dy}{dx}=y\ln(x)
derivative of x/(sqrt(x^2+6))
\frac{d}{dx}(\frac{x}{\sqrt{x^{2}+6}})
integral of (1-x)(e^{-x}+1)
\int\:(1-x)(e^{-x}+1)dx
derivative of ln(3-x)
\frac{d}{dx}(\ln(3-x))
(d^2y)/(dx^2)+4/5 (dy)/(dx)+8/5 y=0
\frac{d^{2}y}{dx^{2}}+\frac{4}{5}\frac{dy}{dx}+\frac{8}{5}y=0
limit as t approaches 1 of (5t-1)/(t+1)
\lim\:_{t\to\:1}(\frac{5t-1}{t+1})
(\partial)/(\partial x)(a/s cos^2(x))
\frac{\partial\:}{\partial\:x}(\frac{a}{s}\cos^{2}(x))
sum from n=1 to infinity of (n-6)/(n+6)
\sum\:_{n=1}^{\infty\:}\frac{n-6}{n+6}
1
..
589
590
591
592
593
..
2459