Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 4 to 5 of x
\int\:_{4}^{5}xdx
integral of e^{-x}cos(wx)
\int\:e^{-x}\cos(wx)dx
(dy)/(dx)=x^8y^{-3}
\frac{dy}{dx}=x^{8}y^{-3}
sum from n=1 to infinity of (1/4)^{n-1}
\sum\:_{n=1}^{\infty\:}(\frac{1}{4})^{n-1}
tangent of f(x)= 3/(sqrt(x)),\at x= 1/16
tangent\:f(x)=\frac{3}{\sqrt{x}},\at\:x=\frac{1}{16}
integral of 2tan^3(2x)sec^5(2x)
\int\:2\tan^{3}(2x)\sec^{5}(2x)dx
derivative of (x^3/3-(x^2)/2-6x+5)
\frac{d}{dx}(\frac{x^{3}}{3}-\frac{x^{2}}{2}-6x+5)
f(x)=ln(sin(x^2+1))
f(x)=\ln(\sin(x^{2}+1))
derivative of x^3-x^2-x+1
\frac{d}{dx}(x^{3}-x^{2}-x+1)
integral of cos(x+pi/2)
\int\:\cos(x+\frac{π}{2})dx
tangent of y=-9/2 x^2+3x+3,(-1,-9/2)
tangent\:y=-\frac{9}{2}x^{2}+3x+3,(-1,-\frac{9}{2})
limit as x approaches 2 of x^2-2
\lim\:_{x\to\:2}(x^{2}-2)
tangent of f(x)=-4x^4+x^3
tangent\:f(x)=-4x^{4}+x^{3}
taylor (z(z+1))/(z^2)
taylor\:\frac{z(z+1)}{z^{2}}
limit as x approaches pi+of h(x)
\lim\:_{x\to\:π+}(h(x))
(\partial)/(\partial x)(4pi^2LT^{-2})
\frac{\partial\:}{\partial\:x}(4π^{2}LT^{-2})
derivative of (7x^6+8x^3^4)
\frac{d}{dx}((7x^{6}+8x^{3})^{4})
integral of x^4(x+1)^4(2x+1)
\int\:x^{4}(x+1)^{4}(2x+1)dx
y^'=x-y
y^{\prime\:}=x-y
slope of (2.9)(5.8)
slope\:(2.9)(5.8)
integral of 1/(1+4x)
\int\:\frac{1}{1+4x}dx
integral of sin^3(x)cos^4(x)
\int\:\sin^{3}(x)\cos^{4}(x)dx
derivative of (xsin(x)/(x^2-1))
\frac{d}{dx}(\frac{x\sin(x)}{x^{2}-1})
integral of p(p+4)^5
\int\:p(p+4)^{5}dp
derivative of (e^x/(5+e^x))
\frac{d}{dx}(\frac{e^{x}}{5+e^{x}})
(\partial)/(\partial y)(2x-5y+3)
\frac{\partial\:}{\partial\:y}(2x-5y+3)
integral of (1+e^xy+xe^xy)
\int\:(1+e^{x}y+xe^{x}y)dx
integral from 1 to infinity of xe^{-2x}
\int\:_{1}^{\infty\:}xe^{-2x}dx
derivative of ax^2e^{-4x}
\frac{d}{dx}(ax^{2}e^{-4x})
(3dy)/(dx)+12y=4
\frac{3dy}{dx}+12y=4
(\partial)/(\partial x)(7x^{2y})
\frac{\partial\:}{\partial\:x}(7x^{2y})
derivative of-24+20x-10x^3+x^5
\frac{d}{dx}(-24+20x-10x^{3}+x^{5})
d/(dt)(t^2sin(t))
\frac{d}{dt}(t^{2}\sin(t))
laplacetransform e^t-pi
laplacetransform\:e^{t}-π
integral of (csc(7θ))/(csc(7θ)-sin(7θ))
\int\:\frac{\csc(7θ)}{\csc(7θ)-\sin(7θ)}dθ
limit as x approaches 3 of 4x-5
\lim\:_{x\to\:3}(4x-5)
derivative of tan^2(nx)
\frac{d}{dx}(\tan^{2}(nx))
derivative of-4/5 sin(x)
derivative\:-\frac{4}{5}\sin(x)
area y=2x^2-8,y=-5+5x
area\:y=2x^{2}-8,y=-5+5x
d/(dt)(2e^{-t^2}t)
\frac{d}{dt}(2e^{-t^{2}}t)
limit as x approaches 1 of ln(x)-5x
\lim\:_{x\to\:1}(\ln(x)-5x)
derivative of f(b)=(4-a-b-c)z
derivative\:f(b)=(4-a-b-c)z
limit as x approaches+(-0) of e^{1/x}
\lim\:_{x\to\:+(-0)}(e^{\frac{1}{x}})
d/(dt)(5cos(t))
\frac{d}{dt}(5\cos(t))
integral from 0 to 1 of 1/(sqrt(x^2+16))
\int\:_{0}^{1}\frac{1}{\sqrt{x^{2}+16}}dx
y^{''}-5y^'-2y=0
y^{\prime\:\prime\:}-5y^{\prime\:}-2y=0
integral from-8 to 8 of (8-|x|)
\int\:_{-8}^{8}(8-\left|x\right|)dx
limit as h approaches 0 of (x+h)^2-x^2
\lim\:_{h\to\:0}((x+h)^{2}-x^{2})
integral of (x+1)/(x(x^2+1))
\int\:\frac{x+1}{x(x^{2}+1)}dx
limit as x approaches-6 of (6-|x|)/(6+x)
\lim\:_{x\to\:-6}(\frac{6-\left|x\right|}{6+x})
integral of (sec(x)+tan(x))^2
\int\:(\sec(x)+\tan(x))^{2}dx
(\partial)/(\partial y)(2x+ycos(xy))
\frac{\partial\:}{\partial\:y}(2x+y\cos(xy))
integral from 0 to 2 of sqrt(17)
\int\:_{0}^{2}\sqrt{17}dx
derivative of e^{z/(z-3)}
derivative\:e^{\frac{z}{z-3}}
(d^2y)/(dx^2)=sqrt(2x-3)
\frac{d^{2}y}{dx^{2}}=\sqrt{2x-3}
limit as x approaches 2-of (x+2)/(x^2-4)
\lim\:_{x\to\:2-}(\frac{x+2}{x^{2}-4})
integral of cos(4x)(1-sin(4x))^2
\int\:\cos(4x)(1-\sin(4x))^{2}dx
integral from 0 to 1 of 4/(1+x^2)
\int\:_{0}^{1}\frac{4}{1+x^{2}}dx
derivative of e^{xy}y
\frac{d}{dx}(e^{xy}y)
integral of (x+3)sqrt(7-x)
\int\:(x+3)\sqrt{7-x}dx
limit as x approaches 0 of x^4sin(3/x)
\lim\:_{x\to\:0}(x^{4}\sin(\frac{3}{x}))
derivative of (2x^3+5^4)
\frac{d}{dx}((2x^{3}+5)^{4})
integral of (sin(x))/(cos^2(x)-3cos(x))
\int\:\frac{\sin(x)}{\cos^{2}(x)-3\cos(x)}dx
tangent of f(x)=sqrt(x^2-x+4),\at x=4
tangent\:f(x)=\sqrt{x^{2}-x+4},\at\:x=4
integral of (8t^4+5t^3-6t^2+7t-9)
\int\:(8t^{4}+5t^{3}-6t^{2}+7t-9)dt
inverse oflaplace ((s+3))/((s^2+s+3))
inverselaplace\:\frac{(s+3)}{(s^{2}+s+3)}
derivative of-e^{-x}sin(x+e^{-x}cos(x))
\frac{d}{dx}(-e^{-x}\sin(x)+e^{-x}\cos(x))
(\partial)/(\partial x)(yz^2cos(x))
\frac{\partial\:}{\partial\:x}(yz^{2}\cos(x))
integral from-8 to 8 of ((64-x^2))/2
\int\:_{-8}^{8}\frac{(64-x^{2})}{2}dx
integral of 3/(sqrt(x^5))
\int\:\frac{3}{\sqrt{x^{5}}}dx
(\partial)/(\partial x)(x^4*y^2-x^3*y)
\frac{\partial\:}{\partial\:x}(x^{4}\cdot\:y^{2}-x^{3}\cdot\:y)
derivative of f(x)=e^{2x+1}
derivative\:f(x)=e^{2x+1}
derivative of x^3+ax^2y+bxy^2+y^3
\frac{d}{dx}(x^{3}+ax^{2}y+bxy^{2}+y^{3})
integral of 3x+2cos(5x)
\int\:3x+2\cos(5x)dx
integral of e^{0.5t}
\int\:e^{0.5t}dt
limit as x approaches 2 of ((3x-6))/(1-sqrt(4x-7))
\lim\:_{x\to\:2}(\frac{(3x-6)}{1-\sqrt{4x-7}})
(\partial)/(\partial x)(y^3+x^2y-3y)
\frac{\partial\:}{\partial\:x}(y^{3}+x^{2}y-3y)
(\partial)/(\partial y)(x^2y^3)
\frac{\partial\:}{\partial\:y}(x^{2}y^{3})
integral of 1/((x+2)(x^2+1))
\int\:\frac{1}{(x+2)(x^{2}+1)}dx
tangent of f(x)=sqrt(x-2),\at x=3
tangent\:f(x)=\sqrt{x-2},\at\:x=3
taylor cos(2x)+sin(x)
taylor\:\cos(2x)+\sin(x)
y^{''}-6y^'+9y=0
y^{\prime\:\prime\:}-6y^{\prime\:}+9y=0
derivative of \sqrt[3]{8x^4}+1/(x^2)
derivative\:\sqrt[3]{8x^{4}}+\frac{1}{x^{2}}
integral from 0 to L of x
\int\:_{0}^{L}xdx
y^'+4y=x^2
y^{\prime\:}+4y=x^{2}
integral from-21 to 0 of 1/(sqrt(4-x))
\int\:_{-21}^{0}\frac{1}{\sqrt{4-x}}dx
integral of 8cos(x)
\int\:8\cos(x)dx
integral from 0 to 2 of 10x^3sqrt(x^2+4)
\int\:_{0}^{2}10x^{3}\sqrt{x^{2}+4}dx
(d^2y)/(dx^2)+2(dy)/(dx)-3y=2x-17
\frac{d^{2}y}{dx^{2}}+2\frac{dy}{dx}-3y=2x-17
(\partial)/(\partial y)(xtan(y))
\frac{\partial\:}{\partial\:y}(x\tan(y))
derivative of y=-2x^2-x+6
derivative\:y=-2x^{2}-x+6
integral from 0 to a of xsin^2(pi/a x)
\int\:_{0}^{a}x\sin^{2}(\frac{π}{a}x)dx
(\partial)/(\partial x)(-2xy^2)
\frac{\partial\:}{\partial\:x}(-2xy^{2})
(dx)/(dt)=x(1-x)
\frac{dx}{dt}=x(1-x)
integral of 6ln(x^2-1)
\int\:6\ln(x^{2}-1)dx
d/(dt)(ln(t))
\frac{d}{dt}(\ln(t))
(\partial)/(\partial x)(e^{-jwn})
\frac{\partial\:}{\partial\:x}(e^{-jwn})
(dy)/(dx)=((x-y))/((x+2y)),y(0)=1
\frac{dy}{dx}=\frac{(x-y)}{(x+2y)},y(0)=1
integral of (1/(sqrt(1+x+y)))
\int\:(\frac{1}{\sqrt{1+x+y}})dx
y^{''}+2y^'+18y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+2y^{\prime\:}+18y=0,y(0)=1,y^{\prime\:}(0)=0
1
..
674
675
676
677
678
..
2459