Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 5.6 of 7.3x+8.4
\lim\:_{x\to\:5.6}(7.3x+8.4)
integral from 0 to 1/2 of arccos(x)
\int\:_{0}^{\frac{1}{2}}\arccos(x)dx
limit as (x,y) approaches (0,0) of y/x
\lim\:_{(x,y)\to\:(0,0)}(\frac{y}{x})
tangent of f(x)=(x^2-48)^4
tangent\:f(x)=(x^{2}-48)^{4}
derivative of 6x^{1/3}
\frac{d}{dx}(6x^{\frac{1}{3}})
integral of 11tan^3(θ)
\int\:11\tan^{3}(θ)dθ
integral of ((x^3))/(x^2+1)
\int\:\frac{(x^{3})}{x^{2}+1}dx
tangent of y=8sin(pix-y),(1,0)
tangent\:y=8\sin(πx-y),(1,0)
derivative of (3sin(x+sqrt(x))^3)
\frac{d}{dx}((3\sin(x)+\sqrt{x})^{3})
limit as x approaches 2 of (3-sqrt(4x+1))/((x^2-2x))
\lim\:_{x\to\:2}(\frac{3-\sqrt{4x+1}}{(x^{2}-2x)})
laplacetransform sin(t+(11pi)/2)
laplacetransform\:\sin(t+\frac{11π}{2})
limit as x approaches 1 of (3x)/(2x+2)
\lim\:_{x\to\:1}(\frac{3x}{2x+2})
y^'=(6x^5y)/(ln(y))
y^{\prime\:}=\frac{6x^{5}y}{\ln(y)}
y^{''}+6y^'-7y=0
y^{\prime\:\prime\:}+6y^{\prime\:}-7y=0
integral of 5e^xsec(e^x+2)
\int\:5e^{x}\sec(e^{x}+2)dx
integral from 6 to 8 of (68)/((x-6)^3)
\int\:_{6}^{8}\frac{68}{(x-6)^{3}}dx
integral of 3x^2+4x
\int\:3x^{2}+4xdx
f(x)=desqrt(x)
f(x)=de\sqrt{x}
integral from 0 to 1 of 4(x^2+1)e^{-x}
\int\:_{0}^{1}4(x^{2}+1)e^{-x}dx
limit as t approaches 0 of (e^t-t-1)/t
\lim\:_{t\to\:0}(\frac{e^{t}-t-1}{t})
integral from 0 to 2 of pi(e^{-x^2})^2
\int\:_{0}^{2}π(e^{-x^{2}})^{2}dx
derivative of f(x)=x^{-1/4}
derivative\:f(x)=x^{-\frac{1}{4}}
derivative of f(x)=e^{x/(x-1)}
derivative\:f(x)=e^{\frac{x}{x-1}}
tangent of e^x,\at x=ln(7)
tangent\:e^{x},\at\:x=\ln(7)
derivative of tan(e^{3t})+e^{tan(3t)}
derivative\:\tan(e^{3t})+e^{\tan(3t)}
derivative of f(x)=7e^xcos(x)
derivative\:f(x)=7e^{x}\cos(x)
limit as x approaches 2 of sqrt(7-x)
\lim\:_{x\to\:2}(\sqrt{7-x})
integral from 1 to infinity of x^{-1/3}
\int\:_{1}^{\infty\:}x^{-\frac{1}{3}}dx
d/(dt)(-e^{-4t}+4te^{-4t})
\frac{d}{dt}(-e^{-4t}+4te^{-4t})
taylor ((z+2))/(z^2)
taylor\:\frac{(z+2)}{z^{2}}
integral of x/(sqrt(x^2+6x+8))
\int\:\frac{x}{\sqrt{x^{2}+6x+8}}dx
derivative of (x^2+x-1/(x^2-1))
\frac{d}{dx}(\frac{x^{2}+x-1}{x^{2}-1})
integral of 6cot^4(x)
\int\:6\cot^{4}(x)dx
integral of 1/(t^3)cos(pi/(t^2))
\int\:\frac{1}{t^{3}}\cos(\frac{π}{t^{2}})dt
y^{''}-4y=e^{-2x}-2x,y(0)=0,y^'(0)=0
y^{\prime\:\prime\:}-4y=e^{-2x}-2x,y(0)=0,y^{\prime\:}(0)=0
y^{''}+y= 3/2 sin(x)
y^{\prime\:\prime\:}+y=\frac{3}{2}\sin(x)
simplify x/3 (2x+1)^3
simplify\:\frac{x}{3}(2x+1)^{3}
slope of (-2,5),(6,2)
slope\:(-2,5),(6,2)
integral of x+1sqrt(x)
\int\:x+1\sqrt{x}dx
integral of (1+x^3)^73x^2
\int\:(1+x^{3})^{7}3x^{2}dx
(\partial)/(\partial y)(x^2e^{xy})
\frac{\partial\:}{\partial\:y}(x^{2}e^{xy})
integral of (1-x)/(1+x)
\int\:\frac{1-x}{1+x}dx
(\partial)/(\partial x)((sin(x))/(r^2))
\frac{\partial\:}{\partial\:x}(\frac{\sin(x)}{r^{2}})
derivative of 9x^{ln(9x})
\frac{d}{dx}(9x^{\ln(9x)})
tangent of g(x)=-x^5+4x^2-2x+2
tangent\:g(x)=-x^{5}+4x^{2}-2x+2
integral of (sin(2x))/(18+cos^2(x))
\int\:\frac{\sin(2x)}{18+\cos^{2}(x)}dx
derivative of (4x^5-5x^4+6x-2/(x^4))
\frac{d}{dx}(\frac{4x^{5}-5x^{4}+6x-2}{x^{4}})
y^'+3y+5=0
y^{\prime\:}+3y+5=0
derivative of 3x^2+12x+6
\frac{d}{dx}(3x^{2}+12x+6)
area Y=(x^{1/2}),Y=6-x,Y=0
area\:Y=(x^{\frac{1}{2}}),Y=6-x,Y=0
integral of e^{x-3}
\int\:e^{x-3}dx
area e^x,e^{-3x},x=ln(4)
area\:e^{x},e^{-3x},x=\ln(4)
integral of (x^2-2)/(sqrt(x))
\int\:\frac{x^{2}-2}{\sqrt{x}}dx
derivative of (150000)/((4x+75)^2)
derivative\:\frac{150000}{(4x+75)^{2}}
derivative of pi^7+sqrt(3x)
derivative\:π^{7}+\sqrt{3x}
derivative of (x+1)^2(2-x)^2
derivative\:(x+1)^{2}(2-x)^{2}
(\partial)/(\partial x)(cos^7(x^4y^9))
\frac{\partial\:}{\partial\:x}(\cos^{7}(x^{4}y^{9}))
sum from n=1 to infinity of (1+1/n)^{-n}
\sum\:_{n=1}^{\infty\:}(1+\frac{1}{n})^{-n}
derivative of sin^4(2xcos^43x)
\frac{d}{dx}(\sin^{4}(2xco)s^{4}3x)
integral of sec^2(x)+3
\int\:\sec^{2}(x)+3dx
inverse oflaplace 7/(s(s^2+5s))
inverselaplace\:\frac{7}{s(s^{2}+5s)}
parity f(x)=x^{tan(x)}
parity\:f(x)=x^{\tan(x)}
integral from 0 to 0.6 of 125x
\int\:_{0}^{0.6}125xdx
integral of 4xsin(3x)
\int\:4x\sin(3x)dx
integral of e^{-y}cos(y)
\int\:e^{-y}\cos(y)dy
tangent of y=(x^2-3x+3),(2,1)
tangent\:y=(x^{2}-3x+3),(2,1)
integral of sqrt(45+4x-x^2)
\int\:\sqrt{45+4x-x^{2}}dx
derivative of y=(ln(x))^x
derivative\:y=(\ln(x))^{x}
integral of (6x^2-3x)/(x^2)
\int\:\frac{6x^{2}-3x}{x^{2}}dx
y^'=2t
y^{\prime\:}=2t
derivative of f(x)=x+11
derivative\:f(x)=x+11
integral of-4e^{2x}
\int\:-4e^{2x}dx
(dy)/(dx)=e^{(y-x)}
\frac{dy}{dx}=e^{(y-x)}
integral from 0 to infinity of xae^{-ax}
\int\:_{0}^{\infty\:}xae^{-ax}dx
y=0
y=0
integral of x*sin(2x)
\int\:x\cdot\:\sin(2x)dx
integral of 4\sqrt[3]{x}+3\sqrt[6]{x^5}
\int\:4\sqrt[3]{x}+3\sqrt[6]{x^{5}}dx
sqrt(1-x^2)y^'-sqrt(1-y^2)=0
\sqrt{1-x^{2}}y^{\prime\:}-\sqrt{1-y^{2}}=0
(\partial)/(\partial x)(7)
\frac{\partial\:}{\partial\:x}(7)
f(x)=ln(x^2+9)
f(x)=\ln(x^{2}+9)
derivative of 1/x+tan(x)
derivative\:\frac{1}{x}+\tan(x)
integral of 1/(-8sqrt(x)-8x)
\int\:\frac{1}{-8\sqrt{x}-8x}dx
tangent of f(x)=x^3-4x,\at x=-2
tangent\:f(x)=x^{3}-4x,\at\:x=-2
integral from 2 to 4 of (2x+5)/(5-x)
\int\:_{2}^{4}\frac{2x+5}{5-x}dx
y^'=xe^{-y}
y^{\prime\:}=xe^{-y}
3y^{''}+5y^'-2y=0
3y^{\prime\:\prime\:}+5y^{\prime\:}-2y=0
limit as x approaches 8-of ln(8-x)
\lim\:_{x\to\:8-}(\ln(8-x))
limit as x approaches 1 of ln(9x)+e^x
\lim\:_{x\to\:1}(\ln(9x)+e^{x})
integral of (3x-1)^3
\int\:(3x-1)^{3}dx
integral from 0 to infinity of xe^{-x}
\int\:_{0}^{\infty\:}xe^{-x}dx
tangent of 4x^2-6x
tangent\:4x^{2}-6x
integral of e^{-x/a}
\int\:e^{-\frac{x}{a}}dx
integral from-1 to 0 of (x^5-4x^3+4x+4)
\int\:_{-1}^{0}(x^{5}-4x^{3}+4x+4)dx
integral of (4x^2-8x)/((x-1)^2(x^2+1))
\int\:\frac{4x^{2}-8x}{(x-1)^{2}(x^{2}+1)}dx
integral of xcos(n*pi*x/2)
\int\:x\cos(n\cdot\:π\cdot\:\frac{x}{2})dx
derivative of 1/(sqrt(2x-1))
\frac{d}{dx}(\frac{1}{\sqrt{2x-1}})
integral of (12x)/(2x-5)
\int\:\frac{12x}{2x-5}dx
limit as x approaches 0 of (csc(2x))/x
\lim\:_{x\to\:0}(\frac{\csc(2x)}{x})
derivative of (3x-5^7(5x+2)^4)
\frac{d}{dx}((3x-5)^{7}(5x+2)^{4})
(\partial)/(\partial x)(t^2e^{(x^2)/(4t)})
\frac{\partial\:}{\partial\:x}(t^{2}e^{\frac{x^{2}}{4t}})
1
..
727
728
729
730
731
..
2459