Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches-2 of (x+2)/(2x)
\lim\:_{x\to\:-2}(\frac{x+2}{2x})
integral of xsin^2(x^2)
\int\:x\sin^{2}(x^{2})dx
integral of (e^x)/(e^{2x)+4e^x+3}
\int\:\frac{e^{x}}{e^{2x}+4e^{x}+3}dx
limit as x approaches 0 of (60)/(x^4)
\lim\:_{x\to\:0}(\frac{60}{x^{4}})
derivative of (sec(x)/(sqrt(x)))
\frac{d}{dx}(\frac{\sec(x)}{\sqrt{x}})
derivative of x^{cos(x)}
derivative\:x^{\cos(x)}
-5t^2y^{''}+ty^'+8y=0
-5t^{2}y^{\prime\:\prime\:}+ty^{\prime\:}+8y=0
area 3/x ,12x, 1/3 x
area\:\frac{3}{x},12x,\frac{1}{3}x
integral of rsqrt(1+4r^2)
\int\:r\sqrt{1+4r^{2}}dr
tangent of f(x)=cos(x),\at x= pi/4
tangent\:f(x)=\cos(x),\at\:x=\frac{π}{4}
derivative of x5^x
derivative\:x5^{x}
tangent of 2/(sqrt(x)),\at x=3
tangent\:\frac{2}{\sqrt{x}},\at\:x=3
integral of 2/(2x+1)
\int\:\frac{2}{2x+1}dx
integral of (e^x)^2
\int\:(e^{x})^{2}dx
sum from n=1 to infinity of 23(2/5)^n
\sum\:_{n=1}^{\infty\:}23(\frac{2}{5})^{n}
integral of (e^x)/(3-e^{2x)}
\int\:\frac{e^{x}}{3-e^{2x}}dx
y(x+3)+y^'=0
y(x+3)+y^{\prime\:}=0
tangent of 8+2x+xe^x
tangent\:8+2x+xe^{x}
tangent of f(x)=(4x)/(x+3),\at x=-5
tangent\:f(x)=\frac{4x}{x+3},\at\:x=-5
limit as x approaches 1.7 of sin(x)
\lim\:_{x\to\:1.7}(\sin(x))
integral of-(19)/(x^2+1)
\int\:-\frac{19}{x^{2}+1}dx
derivative of e^x+e^{-x}
derivative\:e^{x}+e^{-x}
derivative of f(t)=sin(t)
derivative\:f(t)=\sin(t)
limit as x approaches 2 of x^4+x^2-4
\lim\:_{x\to\:2}(x^{4}+x^{2}-4)
limit as x approaches 0 of (x^3+8)/(x+2)
\lim\:_{x\to\:0}(\frac{x^{3}+8}{x+2})
(\partial)/(\partial x)(2x^2y+cos(x^2))
\frac{\partial\:}{\partial\:x}(2x^{2}y+\cos(x^{2}))
derivative of (t^2-1)/(t^2+t-2)
derivative\:\frac{t^{2}-1}{t^{2}+t-2}
derivative of y=cos(x^2)*2x
derivative\:y=\cos(x^{2})\cdot\:2x
integral of 10x
\int\:10xdx
derivative of f(x)=-3e^{x^2+x-1}
derivative\:f(x)=-3e^{x^{2}+x-1}
x^2y^'+2xy=ln(x),y(1)=7
x^{2}y^{\prime\:}+2xy=\ln(x),y(1)=7
derivative of y=4+sqrt(x)
derivative\:y=4+\sqrt{x}
(d^2y)/(dx^2)+8(dy)/(dx)+16y=0
\frac{d^{2}y}{dx^{2}}+8\frac{dy}{dx}+16y=0
maclaurin cos(pix),0
maclaurin\:\cos(πx),0
derivative of (16)/x
derivative\:\frac{16}{x}
(\partial)/(\partial y)(3x^2)
\frac{\partial\:}{\partial\:y}(3x^{2})
derivative of x^5-5x
\frac{d}{dx}(x^{5}-5x)
integral of (x^2)/(x+4)
\int\:\frac{x^{2}}{x+4}dx
(1+ln(x)+y/x)dx+(1-ln(x))dy=0
(1+\ln(x)+\frac{y}{x})dx+(1-\ln(x))dy=0
d/(dt)(e^{2t}*y)
\frac{d}{dt}(e^{2t}\cdot\:y)
limit as x approaches 4 of ((2+x)^3-8)/x
\lim\:_{x\to\:4}(\frac{(2+x)^{3}-8}{x})
laplacetransform 2(s+2)
laplacetransform\:2(s+2)
integral of-3cos(x)+4sec^2(x)
\int\:-3\cos(x)+4\sec^{2}(x)dx
(\partial)/(\partial x)(4cos(4x))
\frac{\partial\:}{\partial\:x}(4\cos(4x))
taylor 1/(x+1)
taylor\:\frac{1}{x+1}
integral of (t+4)e^{t^2+8t+1}
\int\:(t+4)e^{t^{2}+8t+1}dt
y^{''}+8y^'=-256cos(8x)
y^{\prime\:\prime\:}+8y^{\prime\:}=-256\cos(8x)
y^'+2x^{-1}y=6x^4y^2
y^{\prime\:}+2x^{-1}y=6x^{4}y^{2}
integral of 3x^{-2/3}-2x^{5/3}
\int\:3x^{-\frac{2}{3}}-2x^{\frac{5}{3}}dx
integral of e^{(-1)/2 ln(x)}
\int\:e^{\frac{-1}{2}\ln(x)}dx
integral of 1/(u^2+9)
\int\:\frac{1}{u^{2}+9}du
derivative of log_{sqrt(e)}(sin(x))
\frac{d}{dx}(\log_{\sqrt{e}}(\sin(x)))
laplacetransform t(tcos(t)-sin(t))
laplacetransform\:t(t\cos(t)-\sin(t))
sum from n=1 to infinity of (-1^n)/n
\sum\:_{n=1}^{\infty\:}\frac{-1^{n}}{n}
limit as x approaches 2 of (x^2-3x+2)/(x^2+5x-14)
\lim\:_{x\to\:2}(\frac{x^{2}-3x+2}{x^{2}+5x-14})
laplacetransform t^2*e^{-4t}
laplacetransform\:t^{2}\cdot\:e^{-4t}
integral of sin^4(x)cos^2(x)
\int\:\sin^{4}(x)\cos^{2}(x)dx
slope of (22,54),(62,27)
slope\:(22,54),(62,27)
(\partial)/(\partial x)(cos(x^2y^2))
\frac{\partial\:}{\partial\:x}(\cos(x^{2}y^{2}))
d/(dt)(sin(3t))
\frac{d}{dt}(\sin(3t))
integral of \sqrt[3]{x+1}
\int\:\sqrt[3]{x+1}dx
derivative of y=ln(x/(x^2+4))
derivative\:y=\ln(\frac{x}{x^{2}+4})
area y= 1/x ,y=0,x=1,x=e
area\:y=\frac{1}{x},y=0,x=1,x=e
integral of 5/((81+x^2)^{3/2)}
\int\:\frac{5}{(81+x^{2})^{\frac{3}{2}}}dx
derivative of 4/(x^6)
derivative\:\frac{4}{x^{6}}
(\partial)/(\partial x)(x/(x^7-y^5))
\frac{\partial\:}{\partial\:x}(\frac{x}{x^{7}-y^{5}})
limit as x approaches 0+of e^{3xln(x)}
\lim\:_{x\to\:0+}(e^{3x\ln(x)})
derivative of (arctan(6x))^2
derivative\:(\arctan(6x))^{2}
(dy)/(dx)=-x/y ,y(4)=3
\frac{dy}{dx}=-\frac{x}{y},y(4)=3
(dy)/(dx)=e^{8x}+13y
\frac{dy}{dx}=e^{8x}+13y
limit as x approaches pi/3 of (2cos^2(x)+3cos(x)-2)/(2cos(x)-1)
\lim\:_{x\to\:\frac{π}{3}}(\frac{2\cos^{2}(x)+3\cos(x)-2}{2\cos(x)-1})
derivative of f(x)=x^{-1/3}
derivative\:f(x)=x^{-\frac{1}{3}}
integral of e^{5x+4}
\int\:e^{5x+4}dx
integral of (1+x)/(sqrt(x))
\int\:\frac{1+x}{\sqrt{x}}dx
integral of (sqrt(x)+4)/(x^2)
\int\:\frac{\sqrt{x}+4}{x^{2}}dx
integral of sqrt(6+y)(y+2)^2
\int\:\sqrt{6+y}(y+2)^{2}dy
derivative of 6x^4sin(x)
\frac{d}{dx}(6x^{4}\sin(x))
(\partial)/(\partial x)(4x^2-8xy^4+7ay^5-3)
\frac{\partial\:}{\partial\:x}(4x^{2}-8xy^{4}+7ay^{5}-3)
taylor sin(x+1)
taylor\:\sin(x+1)
derivative of-1/2 cot(x)
\frac{d}{dx}(-\frac{1}{2}\cot(x))
(dy)/(dx)=e^xy^2
\frac{dy}{dx}=e^{x}y^{2}
derivative of y=(2x+5)/(3x-2)
derivative\:y=\frac{2x+5}{3x-2}
integral of (e^{7x})/(e^{7x)+1}
\int\:\frac{e^{7x}}{e^{7x}+1}dx
integral of (1+2x)
\int\:(1+2x)dx
derivative of f(x)=sec^6(x)
derivative\:f(x)=\sec^{6}(x)
inverse oflaplace ((2s-6))/(s^2+9)
inverselaplace\:\frac{(2s-6)}{s^{2}+9}
normal of y=2x^3-x^2+2,(1,3)
normal\:y=2x^{3}-x^{2}+2,(1,3)
integral of x^2cos(npix)
\int\:x^{2}\cos(nπx)dx
derivative of cos(x^2)
derivative\:\cos(x^{2})
integral of 1/(sec(x^2))
\int\:\frac{1}{\sec(x^{2})}dx
integral of (e^{x/a}+1)^{1/3}e^{x/a}
\int\:(e^{\frac{x}{a}}+1)^{\frac{1}{3}}e^{\frac{x}{a}}dx
integral from 2 to 4 of (x(2x-3))/6
\int\:_{2}^{4}\frac{x(2x-3)}{6}dx
limit as x approaches 1-of 8/(sqrt(1-x))
\lim\:_{x\to\:1-}(\frac{8}{\sqrt{1-x}})
integral of (x^3+3x^2+6x+5)/(x^2+x+2)
\int\:\frac{x^{3}+3x^{2}+6x+5}{x^{2}+x+2}dx
f^'(x)=ln(x)
f^{\prime\:}(x)=\ln(x)
integral of 1/(xsqrt(x^2-36))
\int\:\frac{1}{x\sqrt{x^{2}-36}}dx
(\partial)/(\partial y)(y-y/(x^2+y^2))
\frac{\partial\:}{\partial\:y}(y-\frac{y}{x^{2}+y^{2}})
(dN)/(dx)=((0.0922)N)(1-N/(60))
\frac{dN}{dx}=((0.0922)N)(1-\frac{N}{60})
derivative of (e^x-e^{-2x}^{1/5})
\frac{d}{dx}((e^{x}-e^{-2x})^{\frac{1}{5}})
derivative of ((3x-1)/(2x+1))
\frac{d}{dx}(\frac{(3x-1)}{2x+1})
1
..
837
838
839
840
841
..
2459