Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches-6-of (-1)/(x+6)
\lim\:_{x\to\:-6-}(\frac{-1}{x+6})
laplacetransform x-1
laplacetransform\:x-1
integral of e^{x^3}x^2
\int\:e^{x^{3}}x^{2}dx
integral from 0 to 1 of (x^2-4x+5)
\int\:_{0}^{1}(x^{2}-4x+5)dx
sum from n=1 to infinity of 2^{-3n}
\sum\:_{n=1}^{\infty\:}2^{-3n}
d/(dy)(9xe^{-1/(y^3)})
\frac{d}{dy}(9xe^{-\frac{1}{y^{3}}})
integral of e^{x^2+3}
\int\:e^{x^{2}+3}dx
slope of y=8x-x^2,(1,7)
slope\:y=8x-x^{2},(1,7)
y^{''}-2y^'-8y=0\quad y(0)=-2,y^'(0)=4
y^{\prime\:\prime\:}-2y^{\prime\:}-8y=0\quad\:y(0)=-2,y^{\prime\:}(0)=4
integral of (t+2t^2)/(sqrt(t))
\int\:\frac{t+2t^{2}}{\sqrt{t}}dt
(xdy)/(dx)=4y
\frac{xdy}{dx}=4y
sum from n=1 to infinity of 1/(1+ln(n))
\sum\:_{n=1}^{\infty\:}\frac{1}{1+\ln(n)}
(\partial)/(\partial x)(3x^4y)
\frac{\partial\:}{\partial\:x}(3x^{4}y)
derivative of (4x^4-7x/(x^3-8))
\frac{d}{dx}(\frac{4x^{4}-7x}{x^{3}-8})
tangent of f(x)=2x^2-9x+10,\at x=3
tangent\:f(x)=2x^{2}-9x+10,\at\:x=3
derivative of x^4+x^2
\frac{d}{dx}(x^{4}+x^{2})
derivative of e^{(6x-7x^2})
\frac{d}{dx}(e^{(6x-7x^{2})})
integral from-2 to 2 of e^{-x^2}
\int\:_{-2}^{2}e^{-x^{2}}dx
tangent of y=2x-2x^2
tangent\:y=2x-2x^{2}
limit as x approaches 2 of 1/2 x^2-4x
\lim\:_{x\to\:2}(\frac{1}{2}x^{2}-4x)
derivative of 2e^{2t}
derivative\:2e^{2t}
area x=-2,x=3,y=2x^2+2,y=0
area\:x=-2,x=3,y=2x^{2}+2,y=0
tangent of 2x^2+x-1,\at x=-1
tangent\:2x^{2}+x-1,\at\:x=-1
integral of cot^5(x)sin^4(x)
\int\:\cot^{5}(x)\sin^{4}(x)dx
implicit (dy)/(dx),cos(x+y)=sin(x)sin(y)
implicit\:\frac{dy}{dx},\cos(x+y)=\sin(x)\sin(y)
derivative of e^2x
\frac{d}{dx}(e^{2}x)
tangent of Y(x)=x^2+3
tangent\:Y(x)=x^{2}+3
derivative of (t^2+7)/((6t-2)^6)
derivative\:\frac{t^{2}+7}{(6t-2)^{6}}
limit as x approaches 6-of cx^2+9x
\lim\:_{x\to\:6-}(cx^{2}+9x)
integral of sin((nxpi)/2)
\int\:\sin(\frac{nxπ}{2})dx
y^{''}+3y^'+2y=cos(e^x)
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=\cos(e^{x})
integral of 1/(x^2)ln(3x)
\int\:\frac{1}{x^{2}}\ln(3x)dx
implicit (dy)/(dx),y=xe^y
implicit\:\frac{dy}{dx},y=xe^{y}
limit as x approaches 6-of sec((pix)/4)
\lim\:_{x\to\:6-}(\sec(\frac{πx}{4}))
(\partial)/(\partial y)(2x-3y)
\frac{\partial\:}{\partial\:y}(2x-3y)
(\partial)/(\partial y)(1/(xy))
\frac{\partial\:}{\partial\:y}(\frac{1}{xy})
y^'=(15x)/y
y^{\prime\:}=\frac{15x}{y}
integral of e^{x(t-1)}
\int\:e^{x(t-1)}dx
(\partial)/(\partial x)(arctan(x))
\frac{\partial\:}{\partial\:x}(\arctan(x))
inverse oflaplace 1/(s^2+s(3/2)2)
inverselaplace\:\frac{1}{s^{2}+s(\frac{3}{2})2}
integral of 1/(sqrt(7x))
\int\:\frac{1}{\sqrt{7x}}dx
integral of (x^2)/(x^2+x-2)
\int\:\frac{x^{2}}{x^{2}+x-2}dx
integral of (5x^3-3x^2+2x-1)/(x^4+x^2)
\int\:\frac{5x^{3}-3x^{2}+2x-1}{x^{4}+x^{2}}dx
integral of 3x^2e^{(x^3)}
\int\:3x^{2}e^{(x^{3})}dx
derivative of (x^2-6x+12/(x-4))
\frac{d}{dx}(\frac{x^{2}-6x+12}{x-4})
integral of 24x^2
\int\:24x^{2}dx
integral of x/(sqrt(x^2+4x+5))
\int\:\frac{x}{\sqrt{x^{2}+4x+5}}dx
derivative of (e^x+4^3)
\frac{d}{dx}((e^{x}+4)^{3})
integral of x^2+5x+6
\int\:x^{2}+5x+6dx
2sin(x),3cos(x),x=0,x=0.7pi
2\sin(x),3\cos(x),x=0,x=0.7π
integral of (\sqrt[11]{x}+\sqrt[12]{x})
\int\:(\sqrt[11]{x}+\sqrt[12]{x})dx
integral of xe^{-inx}
\int\:xe^{-inx}dx
integral of (sec(x)tan(x))/(9+4sec^2(x))
\int\:\frac{\sec(x)\tan(x)}{9+4\sec^{2}(x)}dx
integral of cos(t)e^t
\int\:\cos(t)e^{t}dt
(dx)/(dy)=y^2x-x+y^2-1
\frac{dx}{dy}=y^{2}x-x+y^{2}-1
integral of tan^2(x)sec^3(x
\int\:\tan^{2}(x)\sec^{3}(d)xdx
maclaurin f(x)=arctan(x)
maclaurin\:f(x)=\arctan(x)
integral of (e^{2x})/(sqrt(e^x+1))
\int\:\frac{e^{2x}}{\sqrt{e^{x}+1}}dx
integral from 0 to 1 of 3ln(6x)
\int\:_{0}^{1}3\ln(6x)dx
integral of x^2-3x+4
\int\:x^{2}-3x+4dx
limit as x approaches 0+of sin(x)ln(7x)
\lim\:_{x\to\:0+}(\sin(x)\ln(7x))
limit as x approaches 2+of ((x-3))/(x-2)
\lim\:_{x\to\:2+}(\frac{(x-3)}{x-2})
integral of (e^x-4e^{-x})/(e^x)
\int\:\frac{e^{x}-4e^{-x}}{e^{x}}dx
y^3-(10x+2)+3xy^2(dy)/(dx)=0
y^{3}-(10x+2)+3xy^{2}\frac{dy}{dx}=0
(\partial)/(\partial x)(xe^y+y+1)
\frac{\partial\:}{\partial\:x}(xe^{y}+y+1)
(\partial}{\partial y}(\frac{x^2-y^2)/2)
\frac{\partial\:}{\partial\:y}(\frac{x^{2}-y^{2}}{2})
integral from 0 to 0.02 of 200x
\int\:_{0}^{0.02}200xdx
inverse oflaplace (3s+1)/(s(s+2))
inverselaplace\:\frac{3s+1}{s(s+2)}
tangent of 1/(2x+2),\at x=5
tangent\:\frac{1}{2x+2},\at\:x=5
(4-x^2)(dy)/(dx)=2y
(4-x^{2})\frac{dy}{dx}=2y
tangent of y=((x+1)/(x-3))^2,(7,4)
tangent\:y=(\frac{x+1}{x-3})^{2},(7,4)
integral of 2cos^2(x/2)
\int\:2\cos^{2}(\frac{x}{2})dx
integral of 1/(tln(t))
\int\:\frac{1}{t\ln(t)}dt
tangent of y=5e^x+x,(0,5)
tangent\:y=5e^{x}+x,(0,5)
integral of 1/(49-64x^2)
\int\:\frac{1}{49-64x^{2}}dx
integral of t^7e^{-t^4}
\int\:t^{7}e^{-t^{4}}dt
derivative of f(x)=(x+9)/(sqrt(x))
derivative\:f(x)=\frac{x+9}{\sqrt{x}}
derivative of (3x^4+3/(sin(x)))
\frac{d}{dx}(\frac{3x^{4}+3}{\sin(x)})
d/(ds)(sqrt(s^2+t^2))
\frac{d}{ds}(\sqrt{s^{2}+t^{2}})
tangent of 3x^4-7x^2,\at x=-1
tangent\:3x^{4}-7x^{2},\at\:x=-1
integral of (-2x+4)/((x^2+1)(x-1)^2)
\int\:\frac{-2x+4}{(x^{2}+1)(x-1)^{2}}dx
(dy)/(dx)=4y^2sec^2(2x),y(pi/8)=1
\frac{dy}{dx}=4y^{2}\sec^{2}(2x),y(\frac{π}{8})=1
limit as x approaches-3 of 1/2-x^3
\lim\:_{x\to\:-3}(\frac{1}{2}-x^{3})
integral of-tan(3x)
\int\:-\tan(3x)dx
derivative of 2x^3+3x^2-120x
\frac{d}{dx}(2x^{3}+3x^{2}-120x)
(dv)/(dy)=(v-y^3)/(v-y)
\frac{dv}{dy}=\frac{v-y^{3}}{v-y}
derivative of f(x)=sqrt(25-x^2)
derivative\:f(x)=\sqrt{25-x^{2}}
x(4x+2y)y^'+y(12x+2y)=0
x(4x+2y)y^{\prime\:}+y(12x+2y)=0
integral from-1 to 1 of e^y-y^2-2
\int\:_{-1}^{1}e^{y}-y^{2}-2dy
tangent of y=x^4+3x^3-2x-2
tangent\:y=x^{4}+3x^{3}-2x-2
derivative of log_{5}(sqrt(x^2-1))
derivative\:\log_{5}(\sqrt{x^{2}-1})
limit as x approaches 1 of-x^2-1
\lim\:_{x\to\:1}(-x^{2}-1)
integral of (4x+1)^{-1/2}
\int\:(4x+1)^{-\frac{1}{2}}dx
integral of 20xe^{8x}
\int\:20xe^{8x}dx
(dy)/(dt)= y/(t+1)+4t^2+4t
\frac{dy}{dt}=\frac{y}{t+1}+4t^{2}+4t
derivative of (2x^2/3-sin(x)+3)
\frac{d}{dx}(\frac{2x^{2}}{3}-\sin(x)+3)
limit as x approaches 2 of (x-3)/(x^2+1)
\lim\:_{x\to\:2}(\frac{x-3}{x^{2}+1})
integral of sin^2(xco)s^5x
\int\:\sin^{2}(xco)s^{5}xdx
integral of ax(x-4)
\int\:ax(x-4)dx
integral of xln(2)
\int\:x\ln(2)dx
1
..
915
916
917
918
919
..
2459