Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)((x+y)^5+(x-y)^5)
\frac{\partial\:}{\partial\:x}((x+y)^{5}+(x-y)^{5})
tangent of f(x)=tan^2(x),\at x=-pi/4
tangent\:f(x)=\tan^{2}(x),\at\:x=-\frac{π}{4}
derivative of f(x)=13xe^x
derivative\:f(x)=13xe^{x}
derivative of y=\sqrt[3]{1+8x}
derivative\:y=\sqrt[3]{1+8x}
integral of 1/(sqrt(2pi))e^{-(x^2)/2}
\int\:\frac{1}{\sqrt{2π}}e^{-\frac{x^{2}}{2}}dx
integral of (5x+12)/(x(x^2+4))
\int\:\frac{5x+12}{x(x^{2}+4)}dx
integral of (x+1)^{-8}x
\int\:(x+1)^{-8}xdx
derivative of ln(4x+5)
derivative\:\ln(4x+5)
y^{''}-49y=0
y^{\prime\:\prime\:}-49y=0
limit as x approaches 8 of sqrt(7x-4)
\lim\:_{x\to\:8}(\sqrt{7x-4})
sum from n=0 to infinity of 1.002^n
\sum\:_{n=0}^{\infty\:}1.002^{n}
limit as h approaches+0 of 6x+3h
\lim\:_{h\to\:+0}(6x+3h)
integral from 0 to 2 of xe^{x^2}
\int\:_{0}^{2}xe^{x^{2}}dx
integral of (3x^2-7)/(x^3)
\int\:\frac{3x^{2}-7}{x^{3}}dx
area y=x+2,y=-1,x=2,x=5
area\:y=x+2,y=-1,x=2,x=5
derivative of sqrt(9z-8)
derivative\:\sqrt{9z-8}
integral of sqrt(x^4+4x^2)
\int\:\sqrt{x^{4}+4x^{2}}dx
integral of (x-7)/(x^2-x-12)
\int\:\frac{x-7}{x^{2}-x-12}dx
(\partial)/(\partial x)(8xe^{5xy})
\frac{\partial\:}{\partial\:x}(8xe^{5xy})
sum from n=0 to infinity of (n!)/(11^n)
\sum\:_{n=0}^{\infty\:}\frac{n!}{11^{n}}
derivative of y=2e^{2e^x+x}
derivative\:y=2e^{2e^{x}+x}
integral of (x^3+1)/(x(x-1)^3)
\int\:\frac{x^{3}+1}{x(x-1)^{3}}dx
tangent of f(x)=3x^4+2x-1,(2,51)
tangent\:f(x)=3x^{4}+2x-1,(2,51)
integral of (tan(x))^7(sec(x))^2
\int\:(\tan(x))^{7}(\sec(x))^{2}dx
limit as x approaches 0+of 1/x*sin(1/x)
\lim\:_{x\to\:0+}(\frac{1}{x}\cdot\:\sin(\frac{1}{x}))
(\partial)/(\partial x)(4ln(xy))
\frac{\partial\:}{\partial\:x}(4\ln(xy))
tangent of x^3-6x^2-34x+40,\at x=6
tangent\:x^{3}-6x^{2}-34x+40,\at\:x=6
integral of-kx
\int\:-kxdx
integral of 1/(x(x+1))
\int\:\frac{1}{x(x+1)}dx
limit as x approaches 0 of ((x+5))/(3x)
\lim\:_{x\to\:0}(\frac{(x+5)}{3x})
derivative of y=(t^2+3)e^t
derivative\:y=(t^{2}+3)e^{t}
tangent of y=3+4x^2-2x^3
tangent\:y=3+4x^{2}-2x^{3}
y^{''}+9y=tsin(5t)
y^{\prime\:\prime\:}+9y=t\sin(5t)
derivative of \sqrt[5]{5x-4}
\frac{d}{dx}(\sqrt[5]{5x-4})
integral of 5e^{2x+e^{2x}}
\int\:5e^{2x+e^{2x}}dx
integral of sqrt(x^2+y^2)
\int\:\sqrt{x^{2}+y^{2}}dx
limit as x approaches 5 of 1/x
\lim\:_{x\to\:5}(\frac{1}{x})
derivative of 1+sin(x)
\frac{d}{dx}(1+\sin(x))
derivative of f(x)=(72)/x
derivative\:f(x)=\frac{72}{x}
derivative of (x+3^2)
\frac{d}{dx}((x+3)^{2})
tangent of 4x^2-5x
tangent\:4x^{2}-5x
integral of (e^{2y})/(e^{2y)-1}
\int\:\frac{e^{2y}}{e^{2y}-1}dy
slope of y^4-4y^2=x^4-9x^2,(3,2)
slope\:y^{4}-4y^{2}=x^{4}-9x^{2},(3,2)
integral of (3x^3-1/(4x))
\int\:(3x^{3}-\frac{1}{4x})dx
integral of e^{x-2}
\int\:e^{x-2}dx
sum from n=0 to infinity of 9((1-3)/4)^n
\sum\:_{n=0}^{\infty\:}9(\frac{1-3}{4})^{n}
derivative of (3^x/(x^3))
\frac{d}{dx}(\frac{3^{x}}{x^{3}})
integral from 0 to 1 of (-x+2)-(x^2-1)
\int\:_{0}^{1}(-x+2)-(x^{2}-1)dx
integral of x^3e^x
\int\:x^{3}e^{x}dx
(x^3+y^3)dx+3xy^2dy=0
(x^{3}+y^{3})dx+3xy^{2}dy=0
derivative of (8x+7^2)
\frac{d}{dx}((8x+7)^{2})
integral of 1/(cos(3x))
\int\:\frac{1}{\cos(3x)}dx
tangent of-9x^{1/2}+x^{3/2}
tangent\:-9x^{\frac{1}{2}}+x^{\frac{3}{2}}
slope ofintercept (4,-8),(8,5)
slopeintercept\:(4,-8),(8,5)
derivative of sqrt(3x^4)
\frac{d}{dx}(\sqrt{3x^{4}})
limit as x approaches 4 of (4-|x|)/(4+x)
\lim\:_{x\to\:4}(\frac{4-\left|x\right|}{4+x})
derivative of f(x)= 1/2 (7t^2+t)^{-3}
derivative\:f(x)=\frac{1}{2}(7t^{2}+t)^{-3}
integral from-infinity to 0 of e^{2x}
\int\:_{-\infty\:}^{0}e^{2x}dx
derivative of r/(sqrt(r^2+2))
derivative\:\frac{r}{\sqrt{r^{2}+2}}
(\partial)/(\partial x)(x^2+y^2-y^2x-8)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}-y^{2}x-8)
integral of 2x-2/x
\int\:2x-\frac{2}{x}dx
(\partial)/(\partial y)(xarctan(y/z))
\frac{\partial\:}{\partial\:y}(x\arctan(\frac{y}{z}))
limit as x approaches+(-3) of 2x+5
\lim\:_{x\to\:+(-3)}(2x+5)
derivative of g(u)=sqrt(2)u+sqrt(3u)
derivative\:g(u)=\sqrt{2}u+\sqrt{3u}
limit as x approaches 0 of-2x+1
\lim\:_{x\to\:0}(-2x+1)
derivative of (a^x/(ln(a)))
\frac{d}{dx}(\frac{a^{x}}{\ln(a)})
derivative of (e^x/((1+e^{2x))^{3/2}})
\frac{d}{dx}(\frac{e^{x}}{(1+e^{2x})^{\frac{3}{2}}})
integral of ((x^2-a^2)^{3/2})/x
\int\:\frac{(x^{2}-a^{2})^{\frac{3}{2}}}{x}dx
(dy)/(dt)= y/(t+1)+4t^2+4t,y(1)=12
\frac{dy}{dt}=\frac{y}{t+1}+4t^{2}+4t,y(1)=12
normal of y=5x^8-3x^5+2,(0,4)
normal\:y=5x^{8}-3x^{5}+2,(0,4)
implicit derivative of θ(x),tan(θ(x))= x/(35)
implicit\:\frac{d}{dx}(θ(x)),\tan(θ(x))=\frac{x}{35}
(x)(dy)/(dx)+y= 1/(y^2)
(x)\frac{dy}{dx}+y=\frac{1}{y^{2}}
derivative of (x^2-9x+20)/((x+2)(x-2))
derivative\:\frac{x^{2}-9x+20}{(x+2)(x-2)}
integral of 20x^{3/2}
\int\:20x^{\frac{3}{2}}dx
inverse oflaplace 2/(2s-1)
inverselaplace\:\frac{2}{2s-1}
derivative of 5^{-x/2}
\frac{d}{dx}(5^{-\frac{x}{2}})
derivative of 2*sqrt(x)
derivative\:2\cdot\:\sqrt{x}
limit as x approaches 8 of 7(8x+5)^3
\lim\:_{x\to\:8}(7(8x+5)^{3})
integral from 1 to 3 of 3
\int\:_{1}^{3}3dx
integral from 0 to e of 1/x
\int\:_{0}^{e}\frac{1}{x}dx
integral from 0 to pi/3 of sin(2x)
\int\:_{0}^{\frac{π}{3}}\sin(2x)dx
derivative of ln((e^x-1/(e^{x+1)}))
\frac{d}{dx}(\ln(\frac{e^{x}-1}{e^{x+1}}))
derivative of f(x)=sqrt(19x)
derivative\:f(x)=\sqrt{19x}
integral of e^{3θ}sin(4θ)
\int\:e^{3θ}\sin(4θ)dθ
integral from 0 to 2 of (x-7)^2
\int\:_{0}^{2}(x-7)^{2}dx
integral of \sqrt[3]{ax}
\int\:\sqrt[3]{ax}dx
limit as x approaches 3-of 1/(x^2-9)
\lim\:_{x\to\:3-}(\frac{1}{x^{2}-9})
limit as x approaches 2 of (4-x^2)/x
\lim\:_{x\to\:2}(\frac{4-x^{2}}{x})
tangent of y=x+sqrt(x),(16,20)
tangent\:y=x+\sqrt{x},(16,20)
(dy)/(dx)+e^xy=1
\frac{dy}{dx}+e^{x}y=1
derivative of-x^2+5x+a
derivative\:-x^{2}+5x+a
derivative of h(t)=(t^4-1)^9(t^3+1)^6
derivative\:h(t)=(t^{4}-1)^{9}(t^{3}+1)^{6}
sum from n=1 to infinity of 2+7n
\sum\:_{n=1}^{\infty\:}2+7n
(\partial)/(\partial x)(-1/2 ln(x/a))
\frac{\partial\:}{\partial\:x}(-\frac{1}{2}\ln(\frac{x}{a}))
tangent of f(x)=sqrt(x)(x-8),\at x=16
tangent\:f(x)=\sqrt{x}(x-8),\at\:x=16
integral from 0 to 3 of 6y-2y^2
\int\:_{0}^{3}6y-2y^{2}dy
taylor ln(2+x)
taylor\:\ln(2+x)
derivative of-x+tan(x)
derivative\:-x+\tan(x)
derivative of cos((1-e^{7x})/(1+e^{7x)})
derivative\:\cos(\frac{1-e^{7x}}{1+e^{7x}})
(\partial)/(\partial x)(zx^2)
\frac{\partial\:}{\partial\:x}(zx^{2})
1
..
913
914
915
916
917
..
2459