Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
shift y=120sin(20pit-pi/2)
shift\:y=120\sin(20πt-\frac{π}{2})
asymptotes of f(x)=(-3)/(x+9)-6
asymptotes\:f(x)=\frac{-3}{x+9}-6
intercepts of y=487
intercepts\:y=487
inverse of f(x)= 1/(x^3)-2
inverse\:f(x)=\frac{1}{x^{3}}-2
intercepts of y=x^2+4x-1
intercepts\:y=x^{2}+4x-1
domain of-1/(2sqrt(3-x))
domain\:-\frac{1}{2\sqrt{3-x}}
critical f(x)=x^2+8x+7
critical\:f(x)=x^{2}+8x+7
range of f(x)=(x+2)^2-1
range\:f(x)=(x+2)^{2}-1
domain of y=x+1
domain\:y=x+1
intercepts of f(x)=3x^2-24x+49
intercepts\:f(x)=3x^{2}-24x+49
extreme xe^{(-4x)}
extreme\:xe^{(-4x)}
extreme 3x^4-18x^2
extreme\:3x^{4}-18x^{2}
range of f(x)=4x^2+2
range\:f(x)=4x^{2}+2
asymptotes of y=10^x
asymptotes\:y=10^{x}
intercepts of f(x)=x^2+2x-7
intercepts\:f(x)=x^{2}+2x-7
inverse of 3/(x+6)
inverse\:\frac{3}{x+6}
domain of f(x)=(3x-3)/(sqrt(-x^2+2x+3))
domain\:f(x)=\frac{3x-3}{\sqrt{-x^{2}+2x+3}}
domain of 3/((x+2)(x-1))
domain\:\frac{3}{(x+2)(x-1)}
inverse of g(x)=x^2-8x+12
inverse\:g(x)=x^{2}-8x+12
domain of f(x)=x(x+13)+40
domain\:f(x)=x(x+13)+40
asymptotes of f(x)=(x^2+4)/(x+4)
asymptotes\:f(x)=\frac{x^{2}+4}{x+4}
extreme f(x)=x^3-12x+7
extreme\:f(x)=x^{3}-12x+7
inverse of \sqrt[3]{x}-5
inverse\:\sqrt[3]{x}-5
extreme f(x)=x^3-9x^2+5
extreme\:f(x)=x^{3}-9x^{2}+5
domain of (5x+1)/(7x+9)
domain\:\frac{5x+1}{7x+9}
intercepts of f(x)=2x+5y=20
intercepts\:f(x)=2x+5y=20
inverse of f(x)=6-5x^3
inverse\:f(x)=6-5x^{3}
shift f(t)=sin(2t-pi/3)-4
shift\:f(t)=\sin(2t-\frac{π}{3})-4
asymptotes of f(x)=(x^2-5x-3)/(2x+1)
asymptotes\:f(x)=\frac{x^{2}-5x-3}{2x+1}
domain of (x-1)/(x^2+11x+10)
domain\:\frac{x-1}{x^{2}+11x+10}
inverse of f(x)=3sqrt(x-1)
inverse\:f(x)=3\sqrt{x-1}
domain of f(x)=sqrt(-5x+30)
domain\:f(x)=\sqrt{-5x+30}
domain of 1/((x-1))
domain\:\frac{1}{(x-1)}
inflection f(x)=(25)/((x^2+3))
inflection\:f(x)=\frac{25}{(x^{2}+3)}
inverse of f(x)= 1/2 x+3/4
inverse\:f(x)=\frac{1}{2}x+\frac{3}{4}
asymptotes of f(x)=2^x-2
asymptotes\:f(x)=2^{x}-2
parity f(x)=5x^2
parity\:f(x)=5x^{2}
inverse of f(x)=((6x))/(x+7)
inverse\:f(x)=\frac{(6x)}{x+7}
domain of f(x)=ln(x-4)
domain\:f(x)=\ln(x-4)
inflection f(x)=e^{-3.5x^2}
inflection\:f(x)=e^{-3.5x^{2}}
intercepts of y=2x^2+12x-8
intercepts\:y=2x^{2}+12x-8
asymptotes of 1/(x-1)+1
asymptotes\:\frac{1}{x-1}+1
inverse of 9-7x^3
inverse\:9-7x^{3}
intercepts of f(x)=((3x^2-108))/(x+1)
intercepts\:f(x)=\frac{(3x^{2}-108)}{x+1}
slope of 2x+5y=20
slope\:2x+5y=20
inverse of f(x)=(x+5)/3
inverse\:f(x)=\frac{x+5}{3}
inverse of f(x)=5x+4
inverse\:f(x)=5x+4
domain of f(t)=7t-3t^2
domain\:f(t)=7t-3t^{2}
range of y= 6/(sqrt(x))
range\:y=\frac{6}{\sqrt{x}}
range of f(x)=-x^2-4
range\:f(x)=-x^{2}-4
monotone 1/x
monotone\:\frac{1}{x}
parity y=x^{sin(x)}
parity\:y=x^{\sin(x)}
inverse of f(x)= 5/(2x-1)
inverse\:f(x)=\frac{5}{2x-1}
inverse of f(x)=\sqrt[3]{x}+3
inverse\:f(x)=\sqrt[3]{x}+3
range of f(x)=(x-3)^2
range\:f(x)=(x-3)^{2}
inverse of f(x)=(x+9)/(x+5)
inverse\:f(x)=\frac{x+9}{x+5}
inflection x^3-6x^2-63x
inflection\:x^{3}-6x^{2}-63x
inverse of 4x
inverse\:4x
distance (-3,-1),(-4,-0)
distance\:(-3,-1),(-4,-0)
vertices y=x^2+4x-5
vertices\:y=x^{2}+4x-5
range of y=(-3)/(12-x-x^2)
range\:y=\frac{-3}{12-x-x^{2}}
inverse of y= x/(x-2)
inverse\:y=\frac{x}{x-2}
domain of f(x)= 7/(4-2x)
domain\:f(x)=\frac{7}{4-2x}
domain of g(x)=(2x)/(sqrt(x^2+2x-24))
domain\:g(x)=\frac{2x}{\sqrt{x^{2}+2x-24}}
intercepts of f(x)=2x^2+8x-34
intercepts\:f(x)=2x^{2}+8x-34
inverse of f(x)= 1/(-x+3)
inverse\:f(x)=\frac{1}{-x+3}
intercepts of y=x^2+4x+4
intercepts\:y=x^{2}+4x+4
slope of y=6x+2
slope\:y=6x+2
inverse of f(x)=(7x)/(5x-9)
inverse\:f(x)=\frac{7x}{5x-9}
range of f(x)= 1/(x^2+19)
range\:f(x)=\frac{1}{x^{2}+19}
extreme f(x)= 4/(x+1)
extreme\:f(x)=\frac{4}{x+1}
inflection f(x)=x+1/x
inflection\:f(x)=x+\frac{1}{x}
inflection 5/(x-7)
inflection\:\frac{5}{x-7}
distance (-1,8),(3,-6)
distance\:(-1,8),(3,-6)
parity f(x)=-x^5-1
parity\:f(x)=-x^{5}-1
domain of log_{4}(x)
domain\:\log_{4}(x)
asymptotes of (8x^2+26x-7)/(4x-1)
asymptotes\:\frac{8x^{2}+26x-7}{4x-1}
domain of f(x)=-5x^4-x^3+2x^2
domain\:f(x)=-5x^{4}-x^{3}+2x^{2}
slope of 5x
slope\:5x
domain of f(x)=5x-7
domain\:f(x)=5x-7
asymptotes of f(x)=(5x+6)/(x^2-9x+18)
asymptotes\:f(x)=\frac{5x+6}{x^{2}-9x+18}
inverse of f(x)=(-5x+8)/(6x-10)
inverse\:f(x)=\frac{-5x+8}{6x-10}
domain of sqrt(56-(x^2-x))
domain\:\sqrt{56-(x^{2}-x)}
domain of f(x)=((x+2))/(x^2-4)
domain\:f(x)=\frac{(x+2)}{x^{2}-4}
range of g(x)=-(x+1)^3+3
range\:g(x)=-(x+1)^{3}+3
inverse of f(x)=2x^2+3x+5
inverse\:f(x)=2x^{2}+3x+5
shift 4csc((5pi)/3 x-(20pi)/3)
shift\:4\csc(\frac{5π}{3}x-\frac{20π}{3})
inverse of f(x)=x^2+3*x+2
inverse\:f(x)=x^{2}+3\cdot\:x+2
critical f(x)=x^2-10
critical\:f(x)=x^{2}-10
inverse of f(x)= 8/(3x+1)
inverse\:f(x)=\frac{8}{3x+1}
range of 20x-4
range\:20x-4
domain of f(x)=\sqrt[3]{x+5}
domain\:f(x)=\sqrt[3]{x+5}
inverse of-(cos((11pix)/6))/(2)-2
inverse\:-\frac{\cos(\frac{11πx}{6})}{2}-2
domain of x/(x^2+7x+6)
domain\:\frac{x}{x^{2}+7x+6}
intercepts of f(x)=x^3+3x^2-x-3
intercepts\:f(x)=x^{3}+3x^{2}-x-3
perpendicular 3y=x-6,(5,-5)
perpendicular\:3y=x-6,(5,-5)
slope of 8x+3y=-9
slope\:8x+3y=-9
asymptotes of 4^{x+2}-2
asymptotes\:4^{x+2}-2
intercepts of e^x
intercepts\:e^{x}
inverse of f(x)=(6-4x)/(20x-1)
inverse\:f(x)=\frac{6-4x}{20x-1}
1
..
201
202
203
204
205
..
1324