Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of sqrt(10x+2)
domain\:\sqrt{10x+2}
monotone f(x)=e^{-0.2x+5}
monotone\:f(x)=e^{-0.2x+5}
inverse of f(x)=x^2-16x+90
inverse\:f(x)=x^{2}-16x+90
midpoint (2,-6),(4,8)
midpoint\:(2,-6),(4,8)
domain of sqrt(4-x)-sqrt(x^2-9)
domain\:\sqrt{4-x}-\sqrt{x^{2}-9}
domain of f(x)=log_{2x+3}(x^2+3x-4)
domain\:f(x)=\log_{2x+3}(x^{2}+3x-4)
asymptotes of y=((x+3)(x-4))/((3x+1)(2x-3))
asymptotes\:y=\frac{(x+3)(x-4)}{(3x+1)(2x-3)}
asymptotes of f(x)=(x^3+8)/(x^2+5x+6)
asymptotes\:f(x)=\frac{x^{3}+8}{x^{2}+5x+6}
domain of f(x)=sin^3(x)
domain\:f(x)=\sin^{3}(x)
domain of f(x)=ln(x+1)
domain\:f(x)=\ln(x+1)
range of f(g)=sqrt(x-3)
range\:f(g)=\sqrt{x-3}
domain of (40)/((t+5)^2)
domain\:\frac{40}{(t+5)^{2}}
f(x)=x^3+1
f(x)=x^{3}+1
range of-sqrt(9-x^2)
range\:-\sqrt{9-x^{2}}
simplify (3.2)(-11.3)
simplify\:(3.2)(-11.3)
intercepts of f(x)=(x-2)/(x^2+1)
intercepts\:f(x)=\frac{x-2}{x^{2}+1}
intercepts of f(x)=2+sqrt((x^3)/(x+5))
intercepts\:f(x)=2+\sqrt{\frac{x^{3}}{x+5}}
inverse of f(x)=2x-8
inverse\:f(x)=2x-8
domain of G(t)=(1-3t)/(4+t)
domain\:G(t)=\frac{1-3t}{4+t}
inverse of f(x)= 7/x-3
inverse\:f(x)=\frac{7}{x}-3
slope ofintercept y=x+6,(4,-2)
slopeintercept\:y=x+6,(4,-2)
inflection f(x)=2x^3-3x^2+9x-5
inflection\:f(x)=2x^{3}-3x^{2}+9x-5
inverse of f(x)=(1+5x)/(3-4x)
inverse\:f(x)=\frac{1+5x}{3-4x}
midpoint (3,-6),(5,-3)
midpoint\:(3,-6),(5,-3)
domain of f(x)=(7x)/(x^2-36)
domain\:f(x)=\frac{7x}{x^{2}-36}
inflection y=x^4-4x^2
inflection\:y=x^{4}-4x^{2}
range of (4x)/(9x-1)
range\:\frac{4x}{9x-1}
simplify (1.2)(5.8)
simplify\:(1.2)(5.8)
parity sec^2(2x)dx
parity\:\sec^{2}(2x)dx
extreme y=xe^{-2x^2}
extreme\:y=xe^{-2x^{2}}
asymptotes of f(x)=(1+3x^2-x^3)/(x^2)
asymptotes\:f(x)=\frac{1+3x^{2}-x^{3}}{x^{2}}
asymptotes of f(x)=((-4x^2+100))/(5x-25)
asymptotes\:f(x)=\frac{(-4x^{2}+100)}{5x-25}
intercepts of (x^2)/(x-2)
intercepts\:\frac{x^{2}}{x-2}
slope of 4x+2y=10
slope\:4x+2y=10
inverse of ((4x-1))/(2x+9)
inverse\:\frac{(4x-1)}{2x+9}
domain of e^{sqrt(2)cos(x)}
domain\:e^{\sqrt{2}\cos(x)}
intercepts of (4/3)^x
intercepts\:(\frac{4}{3})^{x}
inverse of f(x)= 2/3 x+8
inverse\:f(x)=\frac{2}{3}x+8
line x+3
line\:x+3
inverse of f(x)=13+\sqrt[3]{x}
inverse\:f(x)=13+\sqrt[3]{x}
domain of x/(x^2+81)
domain\:\frac{x}{x^{2}+81}
inverse of 5x-8
inverse\:5x-8
parallel y=-3/2 x-1
parallel\:y=-\frac{3}{2}x-1
extreme f(x)= 1/(1+x^2)
extreme\:f(x)=\frac{1}{1+x^{2}}
monotone (4-x)/(x-1)
monotone\:\frac{4-x}{x-1}
parity f(x)=xsqrt(8-x^2)
parity\:f(x)=x\sqrt{8-x^{2}}
critical f(x)=((x+4))/(x^2)
critical\:f(x)=\frac{(x+4)}{x^{2}}
intercepts of f(x)=4x^3-12x^2-9x+27
intercepts\:f(x)=4x^{3}-12x^{2}-9x+27
inverse of f(x)= x/(7x-4)
inverse\:f(x)=\frac{x}{7x-4}
domain of 6x-2
domain\:6x-2
slope of 9/5
slope\:\frac{9}{5}
intercepts of f(x)=ln(10-x)
intercepts\:f(x)=\ln(10-x)
domain of f(x)= 3/2
domain\:f(x)=\frac{3}{2}
intercepts of f(x)=sqrt(3x+4)
intercepts\:f(x)=\sqrt{3x+4}
midpoint (-5,-4),(0,-3.5)
midpoint\:(-5,-4),(0,-3.5)
inflection x^3+3x+8
inflection\:x^{3}+3x+8
inverse of f(x)=\sqrt[3]{x}+987
inverse\:f(x)=\sqrt[3]{x}+987
asymptotes of (x+2)/(x-3)
asymptotes\:\frac{x+2}{x-3}
inverse of 5-2/x
inverse\:5-\frac{2}{x}
asymptotes of (2x^2+4x-16)/(x^2-7x+10)
asymptotes\:\frac{2x^{2}+4x-16}{x^{2}-7x+10}
critical f(x)=sqrt(x^2+9)
critical\:f(x)=\sqrt{x^{2}+9}
asymptotes of f(x)= 1/x+3
asymptotes\:f(x)=\frac{1}{x}+3
monotone f(x)=-1/(x+3)-7
monotone\:f(x)=-\frac{1}{x+3}-7
domain of y=sqrt(x^2+3x+7)
domain\:y=\sqrt{x^{2}+3x+7}
inverse of f(x)=2^x-4
inverse\:f(x)=2^{x}-4
inverse of f(x)=\sqrt[3]{3x-2}
inverse\:f(x)=\sqrt[3]{3x-2}
inverse of y=sqrt(x^2-7x)
inverse\:y=\sqrt{x^{2}-7x}
critical-2x^2+25x
critical\:-2x^{2}+25x
intercepts of (2(-x^2-4))/((x^2-4)^2)
intercepts\:\frac{2(-x^{2}-4)}{(x^{2}-4)^{2}}
intercepts of f(x)=3x^3-12x^2-15x
intercepts\:f(x)=3x^{3}-12x^{2}-15x
domain of f(x)=(2x^2-x-1)/(x^2+4)
domain\:f(x)=\frac{2x^{2}-x-1}{x^{2}+4}
asymptotes of f(x)=(4x+4)/(3x+11)
asymptotes\:f(x)=\frac{4x+4}{3x+11}
perpendicular 7x-3y=-3
perpendicular\:7x-3y=-3
critical ln(5x)
critical\:\ln(5x)
domain of x^2-1/x
domain\:x^{2}-\frac{1}{x}
inverse of 2x+1
inverse\:2x+1
critical f(x)=(x^2)/(2x-1)
critical\:f(x)=\frac{x^{2}}{2x-1}
monotone (x^2-3)^3
monotone\:(x^{2}-3)^{3}
range of y=x^2-4x+7
range\:y=x^{2}-4x+7
extreme x^2-6x
extreme\:x^{2}-6x
asymptotes of f(x)= 2/(3x(x-1)(x+5))
asymptotes\:f(x)=\frac{2}{3x(x-1)(x+5)}
monotone f(x)=-14x^2-16x+128
monotone\:f(x)=-14x^{2}-16x+128
critical f(x)=x^{2/3}
critical\:f(x)=x^{\frac{2}{3}}
perpendicular y=3x+2,(3,5)
perpendicular\:y=3x+2,(3,5)
parity f(x)=\sqrt[3]{4x}
parity\:f(x)=\sqrt[3]{4x}
vertices y=x^2+6x+7
vertices\:y=x^{2}+6x+7
asymptotes of f(x)=(x+2)/(3x-15)
asymptotes\:f(x)=\frac{x+2}{3x-15}
asymptotes of f(x)=(x^2+1)/(2x^2-3x-2)
asymptotes\:f(x)=\frac{x^{2}+1}{2x^{2}-3x-2}
slope ofintercept 3x+2y=7
slopeintercept\:3x+2y=7
extreme f(x)=4x^3-48x-8
extreme\:f(x)=4x^{3}-48x-8
intercepts of f(x)=7x+6y=6
intercepts\:f(x)=7x+6y=6
inverse of f(x)=(6+2x)/(4-7x)
inverse\:f(x)=\frac{6+2x}{4-7x}
intercepts of f(x)=(x^2+x-2)/(x^2)
intercepts\:f(x)=\frac{x^{2}+x-2}{x^{2}}
asymptotes of f(x)=(2-7x)/(2+5x)
asymptotes\:f(x)=\frac{2-7x}{2+5x}
inverse of f(x)= 1/((x-2)^2)
inverse\:f(x)=\frac{1}{(x-2)^{2}}
inverse of f(x)=(sqrt(x-2))/8
inverse\:f(x)=\frac{\sqrt{x-2}}{8}
extreme f(x)= 1/3 x^3+3x^2+8x
extreme\:f(x)=\frac{1}{3}x^{3}+3x^{2}+8x
line m=-2,(1,0)
line\:m=-2,(1,0)
domain of 3\sqrt[3]{x+6}-4
domain\:3\sqrt[3]{x+6}-4
line (0,0),(1,3)
line\:(0,0),(1,3)
1
..
362
363
364
365
366
..
1324