Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
slope ofintercept 9x+12y=12
slopeintercept\:9x+12y=12
parallel y=x+6
parallel\:y=x+6
symmetry 7x^4+4=y^2
symmetry\:7x^{4}+4=y^{2}
slope of-3x+5y=15
slope\:-3x+5y=15
line r=-3
line\:r=-3
y=3x+4
y=3x+4
inflection f(x)=2+3x^2-x^3
inflection\:f(x)=2+3x^{2}-x^{3}
intercepts of f(x)=y
intercepts\:f(x)=y
distance (-7,4),(5,-12)
distance\:(-7,4),(5,-12)
inflection f(x)= x/(x+2)
inflection\:f(x)=\frac{x}{x+2}
asymptotes of h(x)= 1/(x+3)-4
asymptotes\:h(x)=\frac{1}{x+3}-4
slope of-15x-5y=8
slope\:-15x-5y=8
inverse of f(x)=-0.75
inverse\:f(x)=-0.75
range of f(x)=sin(x)
range\:f(x)=\sin(x)
inverse of f(x)=((x+1))/(4x+1)
inverse\:f(x)=\frac{(x+1)}{4x+1}
asymptotes of f(x)=(x+5)/(x^2+3x-10)
asymptotes\:f(x)=\frac{x+5}{x^{2}+3x-10}
symmetry x+y^2=4
symmetry\:x+y^{2}=4
slope of 4x-y=12
slope\:4x-y=12
inverse of 3-\sqrt[7]{x-8}
inverse\:3-\sqrt[7]{x-8}
inverse of f(x)= 6/(sqrt(x))
inverse\:f(x)=\frac{6}{\sqrt{x}}
domain of f(x)= 2/x
domain\:f(x)=\frac{2}{x}
symmetry-4x^2-8x
symmetry\:-4x^{2}-8x
domain of f(x)=4x^2-6
domain\:f(x)=4x^{2}-6
range of f(x)= 4/(6-x)
range\:f(x)=\frac{4}{6-x}
symmetry y=3x^2+6x+11
symmetry\:y=3x^{2}+6x+11
inverse of f(x)= x/6
inverse\:f(x)=\frac{x}{6}
inverse of f(x)=(ln(x))^2
inverse\:f(x)=(\ln(x))^{2}
asymptotes of f(x)=3x
asymptotes\:f(x)=3x
domain of (x-1)/3
domain\:\frac{x-1}{3}
extreme f(x)=x^2-8x
extreme\:f(x)=x^{2}-8x
symmetry-x^2+3x
symmetry\:-x^{2}+3x
f(x)=(x+2)^2
f(x)=(x+2)^{2}
range of y=b^x
range\:y=b^{x}
domain of log_{2}(x^2)
domain\:\log_{2}(x^{2})
intercepts of x^2(x+1)(x-3)
intercepts\:x^{2}(x+1)(x-3)
domain of f(x)=(3x)/(4x^2-4)
domain\:f(x)=\frac{3x}{4x^{2}-4}
domain of f(x)= 5/(1-e^x)
domain\:f(x)=\frac{5}{1-e^{x}}
domain of g(x)= 1/(2sqrt(8-x))
domain\:g(x)=\frac{1}{2\sqrt{8-x}}
inverse of f(x)=(3x-1)/(2x+3)
inverse\:f(x)=\frac{3x-1}{2x+3}
asymptotes of f(x)=(7x-8)/(x^2-16)
asymptotes\:f(x)=\frac{7x-8}{x^{2}-16}
domain of x/(x+1)+x^3
domain\:\frac{x}{x+1}+x^{3}
inverse of 2/(x-4)
inverse\:\frac{2}{x-4}
extreme f(x)=x^3-9x^2+27x-5
extreme\:f(x)=x^{3}-9x^{2}+27x-5
intercepts of-2x^3+13x^2-17x-12
intercepts\:-2x^{3}+13x^{2}-17x-12
inverse of f(x)= 1/4 (x-4)^3
inverse\:f(x)=\frac{1}{4}(x-4)^{3}
extreme f(x)=x^2-8x+21
extreme\:f(x)=x^{2}-8x+21
critical (x^2)/(x-3)
critical\:\frac{x^{2}}{x-3}
inverse of f(x)=x^2+8x
inverse\:f(x)=x^{2}+8x
inverse of 6x-9
inverse\:6x-9
range of f(x)=sqrt(1/x+2)
range\:f(x)=\sqrt{\frac{1}{x}+2}
inverse of (x+3)^2-1
inverse\:(x+3)^{2}-1
midpoint (2,-1),(3,6)
midpoint\:(2,-1),(3,6)
intercepts of (x^6+7)(x^{10}+9)
intercepts\:(x^{6}+7)(x^{10}+9)
simplify (-1.5)(-3.5)
simplify\:(-1.5)(-3.5)
inverse of f(x)= 7/8 x+19/8
inverse\:f(x)=\frac{7}{8}x+\frac{19}{8}
monotone (x^3)/2-6x
monotone\:\frac{x^{3}}{2}-6x
inverse of f(x)= 1/(sqrt(4))
inverse\:f(x)=\frac{1}{\sqrt{4}}
perpendicular y=-1/2 x+8,(-2,5)
perpendicular\:y=-\frac{1}{2}x+8,(-2,5)
intercepts of (2x^2-3x-20)/(x-5)
intercepts\:\frac{2x^{2}-3x-20}{x-5}
parallel 6x-y=-12,(0,0)
parallel\:6x-y=-12,(0,0)
midpoint (-2,-1),(-2,4)
midpoint\:(-2,-1),(-2,4)
line x
line\:x
domain of f(x)=(1/x)+4
domain\:f(x)=(\frac{1}{x})+4
periodicity of f(x)=sin(0.25x)
periodicity\:f(x)=\sin(0.25x)
extreme f(x)=2x^4+8x^3
extreme\:f(x)=2x^{4}+8x^{3}
inverse of f(x)= 7/(x+4)
inverse\:f(x)=\frac{7}{x+4}
inverse of f(x)=(x+8)/(x-2)
inverse\:f(x)=\frac{x+8}{x-2}
domain of ln(x)+ln(4-x)
domain\:\ln(x)+\ln(4-x)
inverse of f(x)=sqrt(x+5)-1
inverse\:f(x)=\sqrt{x+5}-1
domain of x^6-6/5 x^5
domain\:x^{6}-\frac{6}{5}x^{5}
domain of f(x)=15-(12)/(x^4)
domain\:f(x)=15-\frac{12}{x^{4}}
domain of f(x)=(sqrt(x)-5)^4+1
domain\:f(x)=(\sqrt{x}-5)^{4}+1
distance (3,2),(-3,-1)
distance\:(3,2),(-3,-1)
domain of (x^2-9)/(x^2-2x-1)
domain\:\frac{x^{2}-9}{x^{2}-2x-1}
line (3,0),(0,4)
line\:(3,0),(0,4)
inverse of (x-2)/(3x+7)
inverse\:\frac{x-2}{3x+7}
range of f(x)=(2x^2+2x-4)/(x^2+x)
range\:f(x)=\frac{2x^{2}+2x-4}{x^{2}+x}
global-6x^3+9x^2+36x
global\:-6x^{3}+9x^{2}+36x
domain of sqrt(3-2x-x^2)
domain\:\sqrt{3-2x-x^{2}}
range of f(x)=-3/2 (1.5)^x
range\:f(x)=-\frac{3}{2}(1.5)^{x}
inverse of f(x)=2-x-x^2
inverse\:f(x)=2-x-x^{2}
periodicity of f(x)=cot(x+pi/4)
periodicity\:f(x)=\cot(x+\frac{π}{4})
extreme f(x)=xsqrt(4-x)
extreme\:f(x)=x\sqrt{4-x}
range of y=2^{-x}+1
range\:y=2^{-x}+1
domain of (x^2-1)/(4x+16)
domain\:\frac{x^{2}-1}{4x+16}
asymptotes of f(x)=(x+3)/(x+1)
asymptotes\:f(x)=\frac{x+3}{x+1}
inverse of f(x)= 1/(4pi^2)x(4pi-x)
inverse\:f(x)=\frac{1}{4π^{2}}x(4π-x)
distance (0,0),(1,2)
distance\:(0,0),(1,2)
asymptotes of f(x)=(1-x^2)/x
asymptotes\:f(x)=\frac{1-x^{2}}{x}
range of 2(x-3)+5
range\:2(x-3)+5
domain of f(x)=(e^x)/(sqrt(1-e^x))
domain\:f(x)=\frac{e^{x}}{\sqrt{1-e^{x}}}
extreme-3x^3+5x^2+16x
extreme\:-3x^{3}+5x^{2}+16x
asymptotes of (x^2+1)/(x^2-1)
asymptotes\:\frac{x^{2}+1}{x^{2}-1}
inverse of (2x)/(x+1)
inverse\:\frac{2x}{x+1}
domain of (x^2-4)/(x+3)
domain\:\frac{x^{2}-4}{x+3}
slope of 2y+3x=7
slope\:2y+3x=7
intercepts of (x-9)/(x-3)
intercepts\:\frac{x-9}{x-3}
shift sin(x+pi)
shift\:\sin(x+π)
intercepts of-16x^2+16x+480
intercepts\:-16x^{2}+16x+480
extreme sin^2(x),0<= x<= pi
extreme\:\sin^{2}(x),0\le\:x\le\:π
1
..
405
406
407
408
409
..
1324