Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
maclaurin 10^x
maclaurin\:10^{x}
(dy)/(dx)-5y=6e^{8x}
\frac{dy}{dx}-5y=6e^{8x}
derivative of e^{1/(x^2}+1/(e^{x^2)})
\frac{d}{dx}(e^{\frac{1}{x^{2}}}+\frac{1}{e^{x^{2}}})
integral of sqrt((x^2)/4-4x+17)
\int\:\sqrt{\frac{x^{2}}{4}-4x+17}dx
derivative of in(x+3)
\frac{d}{dx}(in(x+3))
((x^2+2y^2)dx)/(dy)=xy
\frac{(x^{2}+2y^{2})dx}{dy}=xy
integral from 5 to 8 of y/(y^2-y-2)
\int\:_{5}^{8}\frac{y}{y^{2}-y-2}dy
area e^x,e^{5x},0,1
area\:e^{x},e^{5x},0,1
derivative of f(x)=\sqrt[7]{x}-7e^x
derivative\:f(x)=\sqrt[7]{x}-7e^{x}
derivative of 1-sin(2x)
\frac{d}{dx}(1-\sin(2x))
(\partial)/(\partial x)(z^3ln(yx))
\frac{\partial\:}{\partial\:x}(z^{3}\ln(yx))
laplacetransform 2*((t-1)^2)*1((t-1))
laplacetransform\:2\cdot\:((t-1)^{2})\cdot\:1((t-1))
(\partial)/(\partial x)((7x)/(3y))
\frac{\partial\:}{\partial\:x}(\frac{7x}{3y})
normal of f(x)= x/(2x-3),(1,-1)
normal\:f(x)=\frac{x}{2x-3},(1,-1)
integral of (e^{-st})/(s^2)
\int\:\frac{e^{-st}}{s^{2}}dt
derivative of y=(100)/(x^4)
derivative\:y=\frac{100}{x^{4}}
f(x)=14400+600x+x^2
f(x)=14400+600x+x^{2}
(\partial)/(\partial x)(sin(2x)cos(y))
\frac{\partial\:}{\partial\:x}(\sin(2x)\cos(y))
(dy)/(dx)=e^{6x}+8y
\frac{dy}{dx}=e^{6x}+8y
(dy)/(dx)=5x(x-4)
\frac{dy}{dx}=5x(x-4)
integral of (\sqrt[7]{x})
\int\:(\sqrt[7]{x})dx
integral of 15x
\int\:15xdx
tangent of g(x)=e^{x^5-6x},\at x=-1
tangent\:g(x)=e^{x^{5}-6x},\at\:x=-1
derivative of (2x^2+6x+8)/(sqrt(x))
derivative\:\frac{2x^{2}+6x+8}{\sqrt{x}}
integral of (sqrt(u))/2
\int\:\frac{\sqrt{u}}{2}du
(\partial)/(\partial x)(x^2sin(y)cos(y))
\frac{\partial\:}{\partial\:x}(x^{2}\sin(y)\cos(y))
d/(dv)(u^2-v^2)
\frac{d}{dv}(u^{2}-v^{2})
integral from 0 to 2 of 1/(x+2)
\int\:_{0}^{2}\frac{1}{x+2}dx
limit as x approaches 0 of ((cos(11x)-cos(6x)))/x
\lim\:_{x\to\:0}(\frac{(\cos(11x)-\cos(6x))}{x})
derivative of f(x)=x^3sin(x)
derivative\:f(x)=x^{3}\sin(x)
derivative of (x^2-6x+1/((x^2-1)^2))
\frac{d}{dx}(\frac{x^{2}-6x+1}{(x^{2}-1)^{2}})
integral of cos(x)(5+5sin^2(x))
\int\:\cos(x)(5+5\sin^{2}(x))dx
integral from 0 to 1 of (\sqrt[3]{1+7x})
\int\:_{0}^{1}(\sqrt[3]{1+7x})dx
integral of x^2-9x+3
\int\:x^{2}-9x+3dx
tangent of f(x)=xsqrt(x),(9,27)
tangent\:f(x)=x\sqrt{x},(9,27)
sum from n=1 to infinity of 9/(6+9^n)
\sum\:_{n=1}^{\infty\:}\frac{9}{6+9^{n}}
limit as x approaches-3 of (x^2-5)/(3-x)
\lim\:_{x\to\:-3}(\frac{x^{2}-5}{3-x})
integral of 1/(1-9x^2)
\int\:\frac{1}{1-9x^{2}}dx
integral of 2cos(x^2)
\int\:2\cos(x^{2})dx
derivative of (2x^2+8x+8/(sqrt(x)))
\frac{d}{dx}(\frac{2x^{2}+8x+8}{\sqrt{x}})
derivative of f(x)=(2e^x-3x^5)
derivative\:f(x)=(2e^{x}-3x^{5})
integral of 1/(4t^2-4t+5)
\int\:\frac{1}{4t^{2}-4t+5}dt
(\partial)/(\partial x)(-4y^3sin(4x))
\frac{\partial\:}{\partial\:x}(-4y^{3}\sin(4x))
derivative of sin(x-csc(x))
\frac{d}{dx}(\sin(x)-\csc(x))
integral of (2x^2-3)^2
\int\:(2x^{2}-3)^{2}dx
limit as x approaches 2 of sqrt(x/(x-2))
\lim\:_{x\to\:2}(\sqrt{\frac{x}{x-2}})
limit as x approaches infinity of x^3
\lim\:_{x\to\:\infty\:}(x^{3})
derivative of cos(x)+isin(x)
derivative\:\cos(x)+i\sin(x)
integral of e^{2x}x
\int\:e^{2x}xdx
integral of 9x^2-24x-36
\int\:9x^{2}-24x-36dx
derivative of cos(1-4x)
\frac{d}{dx}(\cos(1-4x))
derivative of f(x)=(3-(1/(x^2)))/(x+4)
derivative\:f(x)=\frac{3-(\frac{1}{x^{2}})}{x+4}
integral of e^{-st}cos(t)
\int\:e^{-st}\cos(t)dt
ty^'=2
ty^{\prime\:}=2
derivative of sec^2(sqrt(x))
\frac{d}{dx}(\sec^{2}(\sqrt{x}))
derivative of (sin(x)/(8xe^x))
\frac{d}{dx}(\frac{\sin(x)}{8xe^{x}})
d/(dt)(t^5)
\frac{d}{dt}(t^{5})
limit as x approaches 0 of tan(x)ln(x)
\lim\:_{x\to\:0}(\tan(x)\ln(x))
tangent of 1/(x^5)
tangent\:\frac{1}{x^{5}}
integral of (x+1)(2x^2+sqrt(x))
\int\:(x+1)(2x^{2}+\sqrt{x})dx
(d^2y)/(dx^2)+6(dy)/(dx)=0
\frac{d^{2}y}{dx^{2}}+6\frac{dy}{dx}=0
limit as x approaches-3 of (3-|x|)/(3+x)
\lim\:_{x\to\:-3}(\frac{3-\left|x\right|}{3+x})
y^{''}+6y^'+34y=25e^{-3x}
y^{\prime\:\prime\:}+6y^{\prime\:}+34y=25e^{-3x}
derivative of 4x-5x^{5/6}
\frac{d}{dx}(4x-5x^{\frac{5}{6}})
derivative of f(x)=xcos(x)+2tan(x)
derivative\:f(x)=x\cos(x)+2\tan(x)
integral of coth(x/3)
\int\:\coth(\frac{x}{3})dx
derivative of a*e^x
\frac{d}{dx}(a\cdot\:e^{x})
limit as x approaches-5-of 2/(x^2-25)
\lim\:_{x\to\:-5-}(\frac{2}{x^{2}-25})
sum from n=1 to infinity of (6n)/(8n+9)
\sum\:_{n=1}^{\infty\:}\frac{6n}{8n+9}
integral of p^8ln(p)
\int\:p^{8}\ln(p)dp
integral of cos^3(8x)sin^{-2}(8x)
\int\:\cos^{3}(8x)\sin^{-2}(8x)dx
y^'=((y^2+1))/(2y)
y^{\prime\:}=\frac{(y^{2}+1)}{2y}
integral of (12x^2+x+2)/(x(x^2+1))
\int\:\frac{12x^{2}+x+2}{x(x^{2}+1)}dx
sum from n=1 to infinity of 3/(n+1)
\sum\:_{n=1}^{\infty\:}\frac{3}{n+1}
derivative of f(x)=sin(8x+4)
derivative\:f(x)=\sin(8x+4)
integral of (48x^2)/((x-21)(x+7)^2)
\int\:\frac{48x^{2}}{(x-21)(x+7)^{2}}dx
derivative of 4x+4
\frac{d}{dx}(4x+4)
derivative of 1/(x(x+2^2))
\frac{d}{dx}(\frac{1}{x(x+2)^{2}})
(tan(2x))^'
(\tan(2x))^{\prime\:}
((4x^3)/3+2x+cos(x)+1)^'
(\frac{4x^{3}}{3}+2x+\cos(x)+1)^{\prime\:}
integral of (sqrt(16-4x^2))
\int\:(\sqrt{16-4x^{2}})dx
derivative of 2-sin(x)
\frac{d}{dx}(2-\sin(x))
(x^2-x)(dy)/(dx)=y-2xy
(x^{2}-x)\frac{dy}{dx}=y-2xy
integral from 0 to 2 of 7x^3sqrt(x^2+4)
\int\:_{0}^{2}7x^{3}\sqrt{x^{2}+4}dx
derivative of (x^2+6x/(10-x^2))
\frac{d}{dx}(\frac{x^{2}+6x}{10-x^{2}})
y^{''}-7y^'+10y=-sin(3t)
y^{\prime\:\prime\:}-7y^{\prime\:}+10y=-\sin(3t)
area y=x^2+2x-11,y=3,[3,5]
area\:y=x^{2}+2x-11,y=3,[3,5]
(\partial)/(\partial x)(4xsin(7x^2y))
\frac{\partial\:}{\partial\:x}(4x\sin(7x^{2}y))
tangent of f(x)=3x^2-5x
tangent\:f(x)=3x^{2}-5x
tangent of f(x)=-4/3 x^{-5/2},\at x=4
tangent\:f(x)=-\frac{4}{3}x^{-\frac{5}{2}},\at\:x=4
derivative of x(x-1(x-2))
\frac{d}{dx}(x(x-1)(x-2))
derivative of y=\sqrt[7]{x}
derivative\:y=\sqrt[7]{x}
area-4x^2+9,x+7
area\:-4x^{2}+9,x+7
y^'+5y=te^{(4t)}
y^{\prime\:}+5y=te^{(4t)}
(\partial)/(\partial x)(3x^2-4)
\frac{\partial\:}{\partial\:x}(3x^{2}-4)
integral of 9/(9+e^x)
\int\:\frac{9}{9+e^{x}}dx
integral of (-1)/(2sqrt(16-x))
\int\:\frac{-1}{2\sqrt{16-x}}dx
limit as x approaches infinity of ce^x
\lim\:_{x\to\:\infty\:}(ce^{x})
derivative of 4x^2+8
\frac{d}{dx}(4x^{2}+8)
integral from 0 to pi of cos(x)-sin(x)
\int\:_{0}^{π}\cos(x)-\sin(x)dx
1
..
1375
1376
1377
1378
1379
..
2459