Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
laplacetransform e^{-x}
laplacetransform\:e^{-x}
integral of-6xln^2(x)
\int\:-6x\ln^{2}(x)dx
integral of sin^3(t)
\int\:\sin^{3}(t)dt
11(t+1)(dy)/(dt)-9y=18t
11(t+1)\frac{dy}{dt}-9y=18t
integral from 1 to e^2 of x^4ln(x)
\int\:_{1}^{e^{2}}x^{4}\ln(x)dx
integral of 5xe^{-3x}
\int\:5xe^{-3x}dx
(dy)/(dx)=x+9
\frac{dy}{dx}=x+9
limit as x approaches 2-of x/(x^2-4)
\lim\:_{x\to\:2-}(\frac{x}{x^{2}-4})
f(x)= 1/(x^2-9)
f(x)=\frac{1}{x^{2}-9}
derivative of y=(tan(-1(9x)))2
derivative\:y=(\tan(-1(9x)))2
derivative of f(x)=(3t-1)(2t-2)^{-1}
derivative\:f(x)=(3t-1)(2t-2)^{-1}
integral of (ar)/(sqrt(a^2-r^2))
\int\:\frac{ar}{\sqrt{a^{2}-r^{2}}}dr
derivative of (sqrt(2)/2)
\frac{d}{dx}(\frac{\sqrt{2}}{2})
integral of (e^x)/(e^{2x)+3e^x+2}
\int\:\frac{e^{x}}{e^{2x}+3e^{x}+2}dx
integral of 5e^{5x}
\int\:5e^{5x}dx
tangent of f(x)=-6x^2-9,\at x=0
tangent\:f(x)=-6x^{2}-9,\at\:x=0
limit as x approaches-4-of f(x)
\lim\:_{x\to\:-4-}(f(x))
derivative of e^x*2^x
\frac{d}{dx}(e^{x}\cdot\:2^{x})
limit as x approaches 0 of (e^x-1)/(sin(4x))
\lim\:_{x\to\:0}(\frac{e^{x}-1}{\sin(4x)})
laplacetransform e^{-t}sin(t)
laplacetransform\:e^{-t}\sin(t)
(\partial)/(\partial x)(6y-2x)
\frac{\partial\:}{\partial\:x}(6y-2x)
derivative of-3/(x^4)
derivative\:-\frac{3}{x^{4}}
tangent of y=sqrt(25-x^2),(3,4)
tangent\:y=\sqrt{25-x^{2}},(3,4)
integral of (e^{-2x})/(e^{-2x)+1}
\int\:\frac{e^{-2x}}{e^{-2x}+1}dx
limit as x approaches-2 of-x^2+2x-6
\lim\:_{x\to\:-2}(-x^{2}+2x-6)
integral of 1/(x^3)sin(1/(x^2))
\int\:\frac{1}{x^{3}}\sin(\frac{1}{x^{2}})dx
sum from n=1 to infinity of 1/(3n+2)
\sum\:_{n=1}^{\infty\:}\frac{1}{3n+2}
(dy)/(dx)x^2y=y-7
\frac{dy}{dx}x^{2}y=y-7
integral from-1 to 3 of x^2-2x-3
\int\:_{-1}^{3}x^{2}-2x-3dx
integral of 6/(xln(3x))
\int\:\frac{6}{x\ln(3x)}dx
sum from n=1 to infinity of 5/(nsqrt(n))
\sum\:_{n=1}^{\infty\:}\frac{5}{n\sqrt{n}}
integral of (2t^2+sec^2(t))
\int\:(2t^{2}+\sec^{2}(t))dt
integral of x^2(20x^7-7x^4+6)
\int\:x^{2}(20x^{7}-7x^{4}+6)dx
derivative of sin(x^5)
derivative\:\sin(x^{5})
area x=7y^2,x=4+3y^2
area\:x=7y^{2},x=4+3y^{2}
integral of xln(x)-x
\int\:x\ln(x)-xdx
integral of 1/(2x^2-5x+3)
\int\:\frac{1}{2x^{2}-5x+3}dx
integral from 0 to 1 of x^{1/3}-x^3
\int\:_{0}^{1}x^{\frac{1}{3}}-x^{3}dx
integral of x\sqrt[9]{36+x^2}
\int\:x\sqrt[9]{36+x^{2}}dx
integral of cos(3x)cos(2x)cos(x)
\int\:\cos(3x)\cos(2x)\cos(x)dx
y^'=((6x^4e^{y/x}+x^2y^2))/(x^3y)
y^{\prime\:}=\frac{(6x^{4}e^{\frac{y}{x}}+x^{2}y^{2})}{x^{3}y}
sum from n=0 to infinity of 1/((n^2-1))
\sum\:_{n=0}^{\infty\:}\frac{1}{(n^{2}-1)}
derivative of ln(3x^2+1)
\frac{d}{dx}(\ln(3x^{2}+1))
limit as x approaches 1-of-2/(sqrt(1-x))
\lim\:_{x\to\:1-}(-\frac{2}{\sqrt{1-x}})
limit as x approaches 0 of ln(sin(x))
\lim\:_{x\to\:0}(\ln(\sin(x)))
solvefor x,y=sin(xy)
solvefor\:x,y=\sin(xy)
derivative of (ln(2x))^2
derivative\:(\ln(2x))^{2}
integral of-e^{-3x}(x-3)(x-6)
\int\:-e^{-3x}(x-3)(x-6)dx
(x+1)(dy)/(dx)-x+4y=0
(x+1)\frac{dy}{dx}-x+4y=0
y^'-y=8te^{2t},y(0)=1
y^{\prime\:}-y=8te^{2t},y(0)=1
integral from 0 to 0.5 of 8000x
\int\:_{0}^{0.5}8000xdx
limit as n approaches infinity of n/(2n)
\lim\:_{n\to\:\infty\:}(\frac{n}{2n})
y^'-xy=x
y^{\prime\:}-xy=x
integral of (3x+8)/(x(x-2)^2)
\int\:\frac{3x+8}{x(x-2)^{2}}dx
derivative of (2x^2-1/(3x+5))
\frac{d}{dx}(\frac{2x^{2}-1}{3x+5})
derivative of 2sqrt(x)+2/(sqrt(x))
\frac{d}{dx}(2\sqrt{x}+\frac{2}{\sqrt{x}})
(\partial)/(\partial x)(x^3*y^5+2x^4*y)
\frac{\partial\:}{\partial\:x}(x^{3}\cdot\:y^{5}+2x^{4}\cdot\:y)
integral of (2x+3)/(9x^2-12x+8)
\int\:\frac{2x+3}{9x^{2}-12x+8}dx
limit as x approaches infinity of (1-5e^{2x})/(3e^x+4e^{2x)}
\lim\:_{x\to\:\infty\:}(\frac{1-5e^{2x}}{3e^{x}+4e^{2x}})
derivative of 6tan(x)
\frac{d}{dx}(6\tan(x))
derivative of ln(csc(x+cot(x)))
\frac{d}{dx}(\ln(\csc(x)+\cot(x)))
limit as x approaches infinity of-2x+8
\lim\:_{x\to\:\infty\:}(-2x+8)
(\partial)/(\partial x)(x/(x^5-y^4))
\frac{\partial\:}{\partial\:x}(\frac{x}{x^{5}-y^{4}})
integral from-R to R of sqrt(R^2-x^2)
\int\:_{-R}^{R}\sqrt{R^{2}-x^{2}}dx
(\partial)/(\partial y)(xe^{-y/x})
\frac{\partial\:}{\partial\:y}(xe^{-\frac{y}{x}})
integral from 1 to infinity of 5/(x^3)
\int\:_{1}^{\infty\:}\frac{5}{x^{3}}dx
integral of (sec(x)tan(x))/(1+sec(x))
\int\:\frac{\sec(x)\tan(x)}{1+\sec(x)}dx
derivative of 1/(2^x)
\frac{d}{dx}(\frac{1}{2^{x}})
integral from 0 to pi/(27) of xtan^2(9x)
\int\:_{0}^{\frac{π}{27}}x\tan^{2}(9x)dx
limit as x approaches 0 of (tan(10x))/x
\lim\:_{x\to\:0}(\frac{\tan(10x)}{x})
derivative of sin(1/(x-1))
\frac{d}{dx}(\sin(\frac{1}{x-1}))
y^{''}+4y=3sin(2t)
y^{\prime\:\prime\:}+4y=3\sin(2t)
derivative of 5^{x^5}
derivative\:5^{x^{5}}
integral of 1/(ln(2x))
\int\:\frac{1}{\ln(2x)}dx
area 2y=5sqrt(x),y=3,2y+2x=7
area\:2y=5\sqrt{x},y=3,2y+2x=7
integral of x(3^x)
\int\:x(3^{x})dx
integral of (1/(-0.4t^3))
\int\:(\frac{1}{-0.4t^{3}})dt
limit as x approaches 2 of 3(2x+5)
\lim\:_{x\to\:2}(3(2x+5))
integral of (x^2+7x+3)^4(2x+7)
\int\:(x^{2}+7x+3)^{4}(2x+7)dx
limit as h approaches 0 of (sin(h))/(6h)
\lim\:_{h\to\:0}(\frac{\sin(h)}{6h})
derivative of sqrt(7+x)
\frac{d}{dx}(\sqrt{7+x})
limit as x approaches infinity of 0/(+x)
\lim\:_{x\to\:\infty\:}(\frac{0}{+x})
y^{''}+2y^'-3y=e^{-x},y(0)=0
y^{\prime\:\prime\:}+2y^{\prime\:}-3y=e^{-x},y(0)=0
derivative of f(x)= 4/(1-6x)
derivative\:f(x)=\frac{4}{1-6x}
sum from n=1 to infinity of 4/(3^{n-1)}
\sum\:_{n=1}^{\infty\:}\frac{4}{3^{n-1}}
limit as x approaches 2 of log_{10x}(x)
\lim\:_{x\to\:2}(\log_{10x}(x))
(\partial)/(\partial x)(3xy^2-ln(x))
\frac{\partial\:}{\partial\:x}(3xy^{2}-\ln(x))
inverse oflaplace (2s)/((s+1)^2)
inverselaplace\:\frac{2s}{(s+1)^{2}}
(xdy)/(dx)-y=x^2sin(x)
\frac{xdy}{dx}-y=x^{2}\sin(x)
derivative of arccsc(7x^3+9)
\frac{d}{dx}(\arccsc(7x^{3}+9))
integral of 6x-1
\int\:6x-1dx
integral of (ln(7x))/(x^9)
\int\:\frac{\ln(7x)}{x^{9}}dx
derivative of ln(xsqrt(x^2-1))
derivative\:\ln(x\sqrt{x^{2}-1})
slope of (-3,-2),(1,-5)
slope\:(-3,-2),(1,-5)
integral of cos(x)(1+7sin^2(x))
\int\:\cos(x)(1+7\sin^{2}(x))dx
derivative of ln(2x)
derivative\:\ln(2x)
sum from n=0 to infinity of 1/(n^4+6)
\sum\:_{n=0}^{\infty\:}\frac{1}{n^{4}+6}
tangent of f(x)=sqrt(x),\at x=5
tangent\:f(x)=\sqrt{x},\at\:x=5
f^{''}(t)-f(t)=-8t,f(3)=-8
f^{\prime\:\prime\:}(t)-f(t)=-8t,f(3)=-8
derivative of f(x)=(2x-1)/(4x+8)
derivative\:f(x)=\frac{2x-1}{4x+8}
1
..
1396
1397
1398
1399
1400
..
2459