Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^{-x}
derivative\:e^{-x}
limit as s approaches 5 of 5/((s-5)^2)
\lim\:_{s\to\:5}(\frac{5}{(s-5)^{2}})
derivative of sin(2^{sqrt(1+1/x)})
\frac{d}{dx}(\sin(2^{\sqrt{1+\frac{1}{x}}}))
derivative of 2-ln(x)
\frac{d}{dx}(2-\ln(x))
integral of ((ln(x))^n)/x
\int\:\frac{(\ln(x))^{n}}{x}dx
tangent of y=sqrt(x^2-x+7),\at x=2
tangent\:y=\sqrt{x^{2}-x+7},\at\:x=2
integral from-2 to 2 of 1/(36+x^2)
\int\:_{-2}^{2}\frac{1}{36+x^{2}}dx
2y^{''}+5y^'-3y=0,y(0)=1,y^'(0)=25
2y^{\prime\:\prime\:}+5y^{\prime\:}-3y=0,y(0)=1,y^{\prime\:}(0)=25
(\partial)/(\partial x)(2xsqrt(y))
\frac{\partial\:}{\partial\:x}(2x\sqrt{y})
integral of 4x^3+3x^2
\int\:4x^{3}+3x^{2}dx
integral of (cos(x))/(sqrt(2sin(x)))
\int\:\frac{\cos(x)}{\sqrt{2\sin(x)}}dx
limit as x approaches 0 of (1/(5x))-(1/(e^{5x)}-1)
\lim\:_{x\to\:0}((\frac{1}{5x})-(\frac{1}{e^{5x}}-1))
derivative of 3(5^x)
derivative\:3(5^{x})
integral from 0 to 2 of (2x-5)^2
\int\:_{0}^{2}(2x-5)^{2}dx
derivative of ((3x+2/(x-1))^7)
\frac{d}{dx}((\frac{3x+2}{x-1})^{7})
y^'=(3x^4+y^4)/(xy^3)
y^{\prime\:}=\frac{3x^{4}+y^{4}}{xy^{3}}
tangent of f(x)= 1/(5+3x),(-1, 1/2)
tangent\:f(x)=\frac{1}{5+3x},(-1,\frac{1}{2})
derivative of pi\sqrt[5]{x}cos(x)
\frac{d}{dx}(π\sqrt[5]{x}\cos(x))
derivative of Ce^x
\frac{d}{dx}(Ce^{x})
(\partial)/(\partial x)(yln(x^2+y^2+4))
\frac{\partial\:}{\partial\:x}(y\ln(x^{2}+y^{2}+4))
derivative of x^3-3/x+e^2
\frac{d}{dx}(x^{3}-\frac{3}{x}+e^{2})
integral of (cos^2(x)*sin(x))
\int\:(\cos^{2}(x)\cdot\:\sin(x))dx
integral of (12x^3)/(x^4+7)
\int\:\frac{12x^{3}}{x^{4}+7}dx
tangent of y=x^3,\at x=-1
tangent\:y=x^{3},\at\:x=-1
derivative of f(x)=(2x)/(sin(x)+cos(x))
derivative\:f(x)=\frac{2x}{\sin(x)+\cos(x)}
integral of ((y^2+1)^2)/(y^2)
\int\:\frac{(y^{2}+1)^{2}}{y^{2}}dy
limit as x approaches 2 of 3/x
\lim\:_{x\to\:2}(\frac{3}{x})
(\partial)/(\partial x)(3xe^y-x^3-e^{3y})
\frac{\partial\:}{\partial\:x}(3xe^{y}-x^{3}-e^{3y})
integral of 3x^2y+e^xsin(y)
\int\:3x^{2}y+e^{x}\sin(y)dx
y^'+((x-2))/(x-1)y=0
y^{\prime\:}+\frac{(x-2)}{x-1}y=0
derivative of x^2*ln(2x)
\frac{d}{dx}(x^{2}\cdot\:\ln(2x))
inverse oflaplace s/(s^2+25)
inverselaplace\:\frac{s}{s^{2}+25}
integral from 0 to pi/3 of sin^4(3x)
\int\:_{0}^{\frac{π}{3}}\sin^{4}(3x)dx
derivative of ln((x+3)/(x-1))
derivative\:\ln(\frac{x+3}{x-1})
121y^{''}-16y=0
121y^{\prime\:\prime\:}-16y=0
(\partial)/(\partial x)((x+y)^2)
\frac{\partial\:}{\partial\:x}((x+y)^{2})
sum from n=1 to infinity of 1/(n^2+3n+2)
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{2}+3n+2}
integral of ((x+1))/((x^2+2x))
\int\:\frac{(x+1)}{(x^{2}+2x)}dx
integral of (6x^3-12x^2+8)/(x^2-2x)
\int\:\frac{6x^{3}-12x^{2}+8}{x^{2}-2x}dx
integral from 0 to 1 of ((x+2)(x-3))
\int\:_{0}^{1}((x+2)(x-3))dx
taylor e^{x+2}
taylor\:e^{x+2}
(4+x)y^'=7y
(4+x)y^{\prime\:}=7y
limit as x approaches 0 of (e^{-8x}-1)/x
\lim\:_{x\to\:0}(\frac{e^{-8x}-1}{x})
limit as x approaches 0 of 3x^2+2x
\lim\:_{x\to\:0}(3x^{2}+2x)
integral of \sqrt[7]{x^2}
\int\:\sqrt[7]{x^{2}}dx
derivative of x^2(5x-1^3)
\frac{d}{dx}(x^{2}(5x-1)^{3})
derivative of f(x)=(x^2+1)(x^3+1)
derivative\:f(x)=(x^{2}+1)(x^{3}+1)
(\partial)/(\partial z)(x+e^z+y)
\frac{\partial\:}{\partial\:z}(x+e^{z}+y)
xy^'+ln(x)y=0
xy^{\prime\:}+\ln(x)y=0
derivative of f(x)=2x^3+3x^2-12x+2
derivative\:f(x)=2x^{3}+3x^{2}-12x+2
limit as x approaches 4-of (x+5)/(x-4)
\lim\:_{x\to\:4-}(\frac{x+5}{x-4})
tangent of y=x^2+2x-1,(1,2)
tangent\:y=x^{2}+2x-1,(1,2)
area sqrt(x),y=2,x=0
area\:\sqrt{x},y=2,x=0
(\partial)/(\partial x)(sin(x)+cos(y))
\frac{\partial\:}{\partial\:x}(\sin(x)+\cos(y))
derivative of f(x)=(x^3)/(x-1)
derivative\:f(x)=\frac{x^{3}}{x-1}
sum from n=0 to infinity of (2/7)^{n/2}
\sum\:_{n=0}^{\infty\:}(\frac{2}{7})^{\frac{n}{2}}
y^{'''}+2y^{''}-y^'-2y=0
y^{\prime\:\prime\:\prime\:}+2y^{\prime\:\prime\:}-y^{\prime\:}-2y=0
(1-cos(t))^'
(1-\cos(t))^{\prime\:}
integral from 0 to 2 of sqrt(1+16x^2)
\int\:_{0}^{2}\sqrt{1+16x^{2}}dx
integral of 1/(x^{15)}
\int\:\frac{1}{x^{15}}dx
limit as x approaches pi of \sqrt[5]{(x-pi)/(x+pi)}
\lim\:_{x\to\:π}(\sqrt[5]{\frac{x-π}{x+π}})
(dy)/(dx)+4y=60
\frac{dy}{dx}+4y=60
simplify 2pisqrt(x/g)
simplify\:2π\sqrt{\frac{x}{g}}
derivative of (-ln(x+1)/(x^2))
\frac{d}{dx}(\frac{-\ln(x)+1}{x^{2}})
integral of (30)/(\sqrt[3]{x^2)}
\int\:\frac{30}{\sqrt[3]{x^{2}}}dx
derivative of (x^2-3/x)
\frac{d}{dx}(\frac{x^{2}-3}{x})
integral of (5t^2)/2
\int\:\frac{5t^{2}}{2}dt
integral of (300)/(sqrt(2q+25))
\int\:\frac{300}{\sqrt{2q+25}}dq
limit as x approaches-5 of 10x+3
\lim\:_{x\to\:-5}(10x+3)
derivative of 4x-sin(2x)
\frac{d}{dx}(4x-\sin(2x))
derivative of-3cot(x)csc(x)
derivative\:-3\cot(x)\csc(x)
integral of e^{x^2}*xln(x)
\int\:e^{x^{2}}\cdot\:x\ln(x)dx
y^'+(3y)/(100-x)= 4/5
y^{\prime\:}+\frac{3y}{100-x}=\frac{4}{5}
integral of (tan^3(ln(x)))/(4x)
\int\:\frac{\tan^{3}(\ln(x))}{4x}dx
integral of tcos^2(t)
\int\:t\cos^{2}(t)dt
derivative of ln(sqrt(2))
derivative\:\ln(\sqrt{2})
(\partial)/(\partial x)(xyz+xy^3+yz^3+zx^3)
\frac{\partial\:}{\partial\:x}(xyz+xy^{3}+yz^{3}+zx^{3})
(dx)/(dt)=tx^{1/3}
\frac{dx}{dt}=tx^{\frac{1}{3}}
integral from 0 to 1 of (x-3)e^x
\int\:_{0}^{1}(x-3)e^{x}dx
derivative of f(x)=8x^5-8cos(x)
derivative\:f(x)=8x^{5}-8\cos(x)
derivative of x^{xcos(x})
\frac{d}{dx}(x^{x\cos(x)})
derivative of x^2+4ln^2(x)
derivative\:x^{2}+4\ln^{2}(x)
tangent of ln(x^2)
tangent\:\ln(x^{2})
derivative of (-3x^5-x^4-x^3+4x^2)/(x^2)
derivative\:\frac{-3x^{5}-x^{4}-x^{3}+4x^{2}}{x^{2}}
x(dy)/(dx)=4y
x\frac{dy}{dx}=4y
area y=x^3,x=-1,x=2,y=0
area\:y=x^{3},x=-1,x=2,y=0
(\partial)/(\partial x)(3/4 (2-3x)^{4/3})
\frac{\partial\:}{\partial\:x}(\frac{3}{4}(2-3x)^{\frac{4}{3}})
limit as x approaches 2 of 2x(x^2-3)
\lim\:_{x\to\:2}(2x(x^{2}-3))
(dy)/(dx)=(e^{x+y})/(y-1)
\frac{dy}{dx}=\frac{e^{x+y}}{y-1}
area y=3x^2,y=x^4-x^2
area\:y=3x^{2},y=x^{4}-x^{2}
tangent of f(x)=3+4x^2-2x^3
tangent\:f(x)=3+4x^{2}-2x^{3}
integral of 1/(x^2-y)
\int\:\frac{1}{x^{2}-y}dx
f(x)=tan(sqrt(x))
f(x)=\tan(\sqrt{x})
derivative of-1/2 cos^2(x)
derivative\:-\frac{1}{2}\cos^{2}(x)
tangent of y=x^2-3x-4,(2,-6)
tangent\:y=x^{2}-3x-4,(2,-6)
integral from 0 to 2 of 5^x
\int\:_{0}^{2}5^{x}dx
integral of arccot(x)
\int\:\arccot(x)dx
y^'+2y=te^{-2t}
y^{\prime\:}+2y=te^{-2t}
x^2y^{''}+2xy^'+100.25y=0
x^{2}y^{\prime\:\prime\:}+2xy^{\prime\:}+100.25y=0
derivative of (150x/(x+8))
\frac{d}{dx}(\frac{150x}{x+8})
1
..
1394
1395
1396
1397
1398
..
2459