Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 8 of sqrt(x+1)
\lim\:_{x\to\:8}(\sqrt{x+1})
derivative of f(x)=8x^2+sqrt(x^3)
derivative\:f(x)=8x^{2}+\sqrt{x^{3}}
derivative of (e^x/(5x^2+8))
\frac{d}{dx}(\frac{e^{x}}{5x^{2}+8})
integral of 30sqrt(t)-(12)/(sqrt(t))
\int\:30\sqrt{t}-\frac{12}{\sqrt{t}}dt
area 3cos(pix),8x^2-2,-0.5,0.5
area\:3\cos(πx),8x^{2}-2,-0.5,0.5
derivative of 4/3 (x+1^{3/2})
\frac{d}{dx}(\frac{4}{3}(x+1)^{\frac{3}{2}})
limit as x approaches infinity of n/x
\lim\:_{x\to\:\infty\:}(\frac{n}{x})
integral from 0 to 1 of e^{-(1+j^2pin)t}
\int\:_{0}^{1}e^{-(1+j^{2}πn)t}dt
derivative of sin(3xcos(3x))
\frac{d}{dx}(\sin(3x)\cos(3x))
integral of 2sqrt(cos(2x))sin(2x)
\int\:2\sqrt{\cos(2x)}\sin(2x)dx
integral of 1/((x^2+3x+5)^3)
\int\:\frac{1}{(x^{2}+3x+5)^{3}}dx
integral of 2/(sqrt(3x-7))
\int\:\frac{2}{\sqrt{3x-7}}dx
limit as x approaches-6+of (2x)/(6+x)
\lim\:_{x\to\:-6+}(\frac{2x}{6+x})
(\partial)/(\partial x)(((1+y))/((1+x)))
\frac{\partial\:}{\partial\:x}(\frac{(1+y)}{(1+x)})
derivative of 2e^t
derivative\:2e^{t}
limit as x approaches 1+of (x^2)/(1-x)
\lim\:_{x\to\:1+}(\frac{x^{2}}{1-x})
integral of sqrt(x)e^{-x}
\int\:\sqrt{x}e^{-x}dx
integral of cos(x)e^{-x}
\int\:\cos(x)e^{-x}dx
area y=3x,y=5x^2
area\:y=3x,y=5x^{2}
(d^2)/(dx^2)(sqrt(x)e^{7x})
\frac{d^{2}}{dx^{2}}(\sqrt{x}e^{7x})
integral of (5x^2)/(sqrt(x^2-4))
\int\:\frac{5x^{2}}{\sqrt{x^{2}-4}}dx
integral of (2s+2)/((s^2+1)(s-1)^3)
\int\:\frac{2s+2}{(s^{2}+1)(s-1)^{3}}ds
sum from n=1 to infinity of 0.45^n
\sum\:_{n=1}^{\infty\:}0.45^{n}
area-2x^2+20,3x-15
area\:-2x^{2}+20,3x-15
limit as x approaches+2 of 2x-2
\lim\:_{x\to\:+2}(2x-2)
derivative of arcsin(2x)
derivative\:\arcsin(2x)
(\partial)/(\partial y)(xy^2-x^3y)
\frac{\partial\:}{\partial\:y}(xy^{2}-x^{3}y)
integral of sqrt(36-t^2)
\int\:\sqrt{36-t^{2}}dt
integral of x2^x
\int\:x2^{x}dx
derivative of f(x)=2x^9ex
derivative\:f(x)=2x^{9}ex
derivative of 4sqrt(x)+1/x
\frac{d}{dx}(4\sqrt{x}+\frac{1}{x})
sum from n=1 to infinity of 1/(n*ln(n))
\sum\:_{n=1}^{\infty\:}\frac{1}{n\cdot\:\ln(n)}
integral of 4x*e^{x^2}
\int\:4x\cdot\:e^{x^{2}}dx
integral of 3xsec(x)tan(x)
\int\:3x\sec(x)\tan(x)dx
(\partial)/(\partial x)(sqrt(x+y))
\frac{\partial\:}{\partial\:x}(\sqrt{x+y})
integral of xe^{-4x^2}
\int\:xe^{-4x^{2}}dx
derivative of f(x)=(sin(x))^x
derivative\:f(x)=(\sin(x))^{x}
integral of e^{2sqrt(x)}
\int\:e^{2\sqrt{x}}dx
(\partial)/(\partial y)((x^2)/(4y^4))
\frac{\partial\:}{\partial\:y}(\frac{x^{2}}{4y^{4}})
integral of-1/2 tan(2x)
\int\:-\frac{1}{2}\tan(2x)dx
integral of 1/(z^2+4)
\int\:\frac{1}{z^{2}+4}dz
area y=x,y=12x,x=16
area\:y=x,y=12x,x=16
y^{''}+y=cot(x)
y^{\prime\:\prime\:}+y=\cot(x)
(\partial)/(\partial y)(ln(3+x^2y^2))
\frac{\partial\:}{\partial\:y}(\ln(3+x^{2}y^{2}))
derivative of (sin(x)/(1+2cos(x)))
\frac{d}{dx}(\frac{\sin(x)}{1+2\cos(x)})
derivative of y=e^xcos(x)
derivative\:y=e^{x}\cos(x)
integral of x^2sqrt(x+1)
\int\:x^{2}\sqrt{x+1}dx
derivative of sin(x+x)
\frac{d}{dx}(\sin(x)+x)
integral of (2x)/(sqrt(1-4x^4))
\int\:\frac{2x}{\sqrt{1-4x^{4}}}dx
integral of (z^2)/(z^3+1)
\int\:\frac{z^{2}}{z^{3}+1}dz
derivative of-9(5x^2+4)^{-6}
derivative\:-9(5x^{2}+4)^{-6}
implicit sqrt(x+y)=x^3+y^2
implicit\:\sqrt{x+y}=x^{3}+y^{2}
integral of e^{tan(x)}sec^2(x)
\int\:e^{\tan(x)}\sec^{2}(x)dx
derivative of y=4x^2
derivative\:y=4x^{2}
derivative of f(x)=ln(7)
derivative\:f(x)=\ln(7)
integral from 0 to 2 of x^3e^{-x^2}
\int\:_{0}^{2}x^{3}e^{-x^{2}}dx
limit as x approaches 0 of (1+x)/(x^2)
\lim\:_{x\to\:0}(\frac{1+x}{x^{2}})
tangent of 4(x-(1/x)^4)
tangent\:4(x-(\frac{1}{x})^{4})
derivative of f(x)= x/3
derivative\:f(x)=\frac{x}{3}
derivative of arccos(cos^2(x))
\frac{d}{dx}(\arccos(\cos^{2}(x)))
derivative of 12sin(x)
\frac{d}{dx}(12\sin(x))
tangent of f(x)=-4x^2-2x+3,\at x=-3
tangent\:f(x)=-4x^{2}-2x+3,\at\:x=-3
limit as t approaches 1 of sqrt(t+5)
\lim\:_{t\to\:1}(\sqrt{t+5})
d/(dt)(3^t)
\frac{d}{dt}(3^{t})
(dy)/(dx)=1-(10x-y+4)^2
\frac{dy}{dx}=1-(10x-y+4)^{2}
3y^{''}+3y^'-2y=0
3y^{\prime\:\prime\:}+3y^{\prime\:}-2y=0
taylor e^{(x^2)}
taylor\:e^{(x^{2})}
limit as x approaches 1+of (2x+1)/(x-1)
\lim\:_{x\to\:1+}(\frac{2x+1}{x-1})
y^{''}+12y^'+37y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+12y^{\prime\:}+37y=0,y(0)=1,y^{\prime\:}(0)=0
integral from 0 to 1 of (23)/(4y-1)
\int\:_{0}^{1}\frac{23}{4y-1}dy
derivative of f(x)=cos^3(pix)
derivative\:f(x)=\cos^{3}(πx)
integral of (sqrt(x^2-400))/x
\int\:\frac{\sqrt{x^{2}-400}}{x}dx
integral of 0/(x+1)
\int\:\frac{0}{x+1}dx
limit as x approaches 0 of e^{2x}
\lim\:_{x\to\:0}(e^{2x})
(\partial)/(\partial x)(-e^ysin(x)+4y+7yx)
\frac{\partial\:}{\partial\:x}(-e^{y}\sin(x)+4y+7yx)
derivative of r/(sqrt(r^2+8))
derivative\:\frac{r}{\sqrt{r^{2}+8}}
y^{''}-3y^'-4y=0,y(0)=a,y^'(0)=5
y^{\prime\:\prime\:}-3y^{\prime\:}-4y=0,y(0)=a,y^{\prime\:}(0)=5
derivative of 4/(2-4)+(27)/(4+2)
derivative\:\frac{4}{2-4}+\frac{27}{4+2}
integral of 7e^{3x+e^{3x}}
\int\:7e^{3x+e^{3x}}dx
(\partial)/(\partial y)(((x+y))/((x-y)))
\frac{\partial\:}{\partial\:y}(\frac{(x+y)}{(x-y)})
integral of e^{(-1-sqrt(13)i)t}
\int\:e^{(-1-\sqrt{13}i)t}dt
integral of 1/(2u+1)
\int\:\frac{1}{2u+1}du
limit as x approaches 1+of ln(3x^2-x-2)
\lim\:_{x\to\:1+}(\ln(3x^{2}-x-2))
tangent of f(x)=x^2+1,\at x=3
tangent\:f(x)=x^{2}+1,\at\:x=3
limit as x approaches 3 of 5/((x-3)^2)
\lim\:_{x\to\:3}(\frac{5}{(x-3)^{2}})
(dy)/(dx)= 1/x (y^2+y),y(1)=0.5
\frac{dy}{dx}=\frac{1}{x}(y^{2}+y),y(1)=0.5
integral of x^3ln(x)
\int\:x^{3}\ln(x)dx
integral of (x^3+1)^2x^2
\int\:(x^{3}+1)^{2}x^{2}dx
(x+1)y^'+(x+2)y=2xe^{-x}
(x+1)y^{\prime\:}+(x+2)y=2xe^{-x}
tangent of x^{2/3}+y^{2/3}=10,(27,1)
tangent\:x^{\frac{2}{3}}+y^{\frac{2}{3}}=10,(27,1)
derivative of 2x^3-3x^2+2x
\frac{d}{dx}(2x^{3}-3x^{2}+2x)
tangent of 6x^4-9xy-7y^2=104,(-2,2)
tangent\:6x^{4}-9xy-7y^{2}=104,(-2,2)
sum from n=1 to infinity of (-n)/(n^2+1)
\sum\:_{n=1}^{\infty\:}\frac{-n}{n^{2}+1}
limit as x approaches 2 of 3x^2-5x+2
\lim\:_{x\to\:2}(3x^{2}-5x+2)
e^ydx-e^{-x}dy=0,y(0)=0
e^{y}dx-e^{-x}dy=0,y(0)=0
(d^2)/(d{r)^2}(pi{r}^2)
\frac{d^{2}}{d{r}^{2}}(π{r}^{2})
derivative of f(x)=(x+6)/(e^x)
derivative\:f(x)=\frac{x+6}{e^{x}}
sum from n=0 to infinity of sec(n)
\sum\:_{n=0}^{\infty\:}\sec(n)
integral of x^3(2x+5-3sqrt(x))
\int\:x^{3}(2x+5-3\sqrt{x})dx
sum from n=1 to infinity of e^{2n}
\sum\:_{n=1}^{\infty\:}e^{2n}
1
..
1424
1425
1426
1427
1428
..
2459