Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of xcos(y-ycos(x))
\frac{d}{dx}(x\cos(y)-y\cos(x))
derivative of e^{t^2}
derivative\:e^{t^{2}}
inverse oflaplace ((s-1))/(s(s^2+s+1))
inverselaplace\:\frac{(s-1)}{s(s^{2}+s+1)}
integral of x/((1+x^2)sqrt(1-x^4))
\int\:\frac{x}{(1+x^{2})\sqrt{1-x^{4}}}dx
x(dy)/(dx)=xtan(y/x)+y
x\frac{dy}{dx}=x\tan(\frac{y}{x})+y
derivative of (9x^6+2x^3)^4
derivative\:(9x^{6}+2x^{3})^{4}
tangent of y=6+4x^2-2x^3,\at x=a
tangent\:y=6+4x^{2}-2x^{3},\at\:x=a
d/(dt)(e^{-t}sin(t))
\frac{d}{dt}(e^{-t}\sin(t))
integral of (arcsin(7x))/(sqrt(1-49x^2))
\int\:\frac{\arcsin(7x)}{\sqrt{1-49x^{2}}}dx
derivative of ln(5/(x^2))
derivative\:\ln(\frac{5}{x^{2}})
area x^2y=4,x=2,y=4
area\:x^{2}y=4,x=2,y=4
maclaurin 9cos(-x)
maclaurin\:9\cos(-x)
integral of 1/(x^2+8x)
\int\:\frac{1}{x^{2}+8x}dx
(dy)/(dx)= y/((x+1))+4x^2+4x
\frac{dy}{dx}=\frac{y}{(x+1)}+4x^{2}+4x
(\partial)/(\partial v)(cos(u))
\frac{\partial\:}{\partial\:v}(\cos(u))
(\partial)/(\partial y)(2xy-3x^2)
\frac{\partial\:}{\partial\:y}(2xy-3x^{2})
limit as x approaches 1 of (2x+1)/(x+2)
\lim\:_{x\to\:1}(\frac{2x+1}{x+2})
derivative of (9x^2-3x-10y^{''}+(x^2+x)y^'+(2x-1)y)
\frac{d}{dx}((9x^{2}-3x-10)y^{\prime\:\prime\:}+(x^{2}+x)y^{\prime\:}+(2x-1)y)
(\partial)/(\partial x)(tan(6+2x^2y^3z^2))
\frac{\partial\:}{\partial\:x}(\tan(6+2x^{2}y^{3}z^{2}))
derivative of ln(-ln(1-x))
\frac{d}{dx}(\ln(-\ln(1-x)))
laplacetransform 2((e^{2t}-e^{2t})/2)sin(2t)
laplacetransform\:2(\frac{e^{2t}-e^{2t}}{2})\sin(2t)
(sin(2pix)+2pixcos(2pix))^'
(\sin(2πx)+2πx\cos(2πx))^{\prime\:}
(dy}{dx}=\frac{x-y)/x
\frac{dy}{dx}=\frac{x-y}{x}
(\partial)/(\partial x)(6x(x^2+3y^2-1)^2)
\frac{\partial\:}{\partial\:x}(6x(x^{2}+3y^{2}-1)^{2})
sum from n=1 to infinity of cos(n)
\sum\:_{n=1}^{\infty\:}\cos(n)
limit as x approaches 0 of (cos(x))/x
\lim\:_{x\to\:0}(\frac{\cos(x)}{x})
(\partial)/(\partial x)(x^2-y^2+5xy)
\frac{\partial\:}{\partial\:x}(x^{2}-y^{2}+5xy)
derivative of f(x)=sqrt(2-x)
derivative\:f(x)=\sqrt{2-x}
y^{''}-4y^'+2y=0,y(0)=0,y^'(0)=9
y^{\prime\:\prime\:}-4y^{\prime\:}+2y=0,y(0)=0,y^{\prime\:}(0)=9
limit as x approaches 1-of x/((x-1)^2)
\lim\:_{x\to\:1-}(\frac{x}{(x-1)^{2}})
(dy}{dx}=\frac{3x+2)/y
\frac{dy}{dx}=\frac{3x+2}{y}
integral of 3/(y^2)
\int\:\frac{3}{y^{2}}dy
integral of e^{(-ln(2)(t))/x}
\int\:e^{\frac{-\ln(2)(t)}{x}}dt
integral of (sqrt(x))/(x^2+1)
\int\:\frac{\sqrt{x}}{x^{2}+1}dx
derivative of-4x+2
\frac{d}{dx}(-4x+2)
integral of 4-2y
\int\:4-2ydy
integral from-64 to 125 of 1/(\sqrt[3]{x)}
\int\:_{-64}^{125}\frac{1}{\sqrt[3]{x}}dx
derivative of (e^x/(6x^2))
\frac{d}{dx}(\frac{e^{x}}{6x^{2}})
integral of cos(3x-2)sin(4-5x)
\int\:\cos(3x-2)\sin(4-5x)dx
area sin(x),[ 11/9 pi, 12/8 pi]
area\:\sin(x),[\frac{11}{9}π,\frac{12}{8}π]
integral of tan^3(x)+tan(x)
\int\:\tan^{3}(x)+\tan(x)dx
slope ofintercept (1.1)(2.4)
slopeintercept\:(1.1)(2.4)
integral of (6arcsin(x))/(x^2)
\int\:\frac{6\arcsin(x)}{x^{2}}dx
taylor 1/((7+x)^3)
taylor\:\frac{1}{(7+x)^{3}}
sum from m=1 to infinity of 3*(1/3)
\sum\:_{m=1}^{\infty\:}3\cdot\:(\frac{1}{3})
integral of (x-3)^2sin(x-3)
\int\:(x-3)^{2}\sin(x-3)dx
integral of 8tan(8x)
\int\:8\tan(8x)dx
y^'=((x^2))/y
y^{\prime\:}=\frac{(x^{2})}{y}
integral of (2-1/x)^2
\int\:(2-\frac{1}{x})^{2}dx
integral from 3 to 0 of (-x^3-2x^2+x-1)
\int\:_{3}^{0}(-x^{3}-2x^{2}+x-1)dx
tangent of y=(sqrt(x))/(x+3),(1,0.25)
tangent\:y=\frac{\sqrt{x}}{x+3},(1,0.25)
derivative of 1/((3x^2+x-3^9))
\frac{d}{dx}(\frac{1}{(3x^{2}+x-3)^{9}})
f(x)=x^{x^2}
f(x)=x^{x^{2}}
limit as x approaches 9 of sqrt(25-x)
\lim\:_{x\to\:9}(\sqrt{25-x})
(\partial)/(\partial x)(2xye^{x^2})
\frac{\partial\:}{\partial\:x}(2xye^{x^{2}})
limit as x approaches 1 of (x-2[x])^2
\lim\:_{x\to\:1}((x-2[x])^{2})
y^{''}+4y^'+5y=e^{-x}-5x
y^{\prime\:\prime\:}+4y^{\prime\:}+5y=e^{-x}-5x
tangent of f(x)=3x^2-10x
tangent\:f(x)=3x^{2}-10x
derivative of pix^3
derivative\:πx^{3}
derivative of y=e^{2x}tan(2x)
derivative\:y=e^{2x}\tan(2x)
slope of y=3x^2-x+1
slope\:y=3x^{2}-x+1
x(dy}{dx}+3(y+x^2)=\frac{sin(x))/x
x\frac{dy}{dx}+3(y+x^{2})=\frac{\sin(x)}{x}
integral of ysqrt(1+y^2)
\int\:y\sqrt{1+y^{2}}dy
x^{''}-5x^'+6x=(t^2+t)sin(t)
x^{\prime\:\prime\:}-5x^{\prime\:}+6x=(t^{2}+t)\sin(t)
limit as x approaches-1-of g(x)
\lim\:_{x\to\:-1-}(g(x))
derivative of f(x)= 3/((2x+1)^{5/2)}
derivative\:f(x)=\frac{3}{(2x+1)^{\frac{5}{2}}}
xy^'-y=-x^2+2x+2
xy^{\prime\:}-y=-x^{2}+2x+2
integral of (x^2+1)/(x^2-x)
\int\:\frac{x^{2}+1}{x^{2}-x}dx
(\partial)/(\partial y)(8xln(xy))
\frac{\partial\:}{\partial\:y}(8x\ln(xy))
t^2*y^'+t*y=5
t^{2}\cdot\:y^{\prime\:}+t\cdot\:y=5
derivative of e^{xln(x})
\frac{d}{dx}(e^{x\ln(x)})
limit as x approaches 0 of (e^x+x)^{m/x}
\lim\:_{x\to\:0}((e^{x}+x)^{\frac{m}{x}})
integral of 7/(sqrt(9-49x^2))
\int\:\frac{7}{\sqrt{9-49x^{2}}}dx
inverse oflaplace {1/(s^4)}
inverselaplace\:\left\{\frac{1}{s^{4}}\right\}
area 2,-5,y=2x^2+12,y=0
area\:2,-5,y=2x^{2}+12,y=0
limit as x approaches infinity of 4+1/x
\lim\:_{x\to\:\infty\:}(4+\frac{1}{x})
(\partial)/(\partial x)(1/(sqrt(3x-2)))
\frac{\partial\:}{\partial\:x}(\frac{1}{\sqrt{3x-2}})
integral of sin(24x)cos(17x)
\int\:\sin(24x)\cos(17x)dx
integral of x-(x^2)/2+c
\int\:x-\frac{x^{2}}{2}+cdx
sum from n=1 to infinity of 1/(n^2+6n+8)
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{2}+6n+8}
limit as x approaches 0 of ((cos(x)))/x
\lim\:_{x\to\:0}(\frac{(\cos(x))}{x})
derivative of 1/(sqrt(1+4x^2))
\frac{d}{dx}(\frac{1}{\sqrt{1+4x^{2}}})
d/(dt)(pit)
\frac{d}{dt}(πt)
limit as x approaches 0 of ((sin(8x)))/x
\lim\:_{x\to\:0}(\frac{(\sin(8x))}{x})
limit as x approaches 2 of 8x^3+1
\lim\:_{x\to\:2}(8x^{3}+1)
derivative of 8e^{8t+5}
derivative\:8e^{8t+5}
integral of 1/(5-8x)
\int\:\frac{1}{5-8x}dx
limit as x approaches 2 of 2x-1
\lim\:_{x\to\:2}(2x-1)
(sqrt(x^2+1))^'
(\sqrt{x^{2}+1})^{\prime\:}
derivative of xy^{-1}
\frac{d}{dx}(xy^{-1})
(\partial)/(\partial x)(3ln((2xy)/(5z)))
\frac{\partial\:}{\partial\:x}(3\ln(\frac{2xy}{5z}))
integral of (cos(t))/(2+sin(t))
\int\:\frac{\cos(t)}{2+\sin(t)}dt
integral of (x*ln(x))
\int\:(x\cdot\:\ln(x))dx
d/(dj)(3i+4j)
\frac{d}{dj}(3i+4j)
derivative of f(x)=sec^2(x)-3
derivative\:f(x)=\sec^{2}(x)-3
integral of (sqrt(4x^2-81))/(x^3)
\int\:\frac{\sqrt{4x^{2}-81}}{x^{3}}dx
derivative of 3/(8(x+1^{5/2)})
\frac{d}{dx}(\frac{3}{8(x+1)^{\frac{5}{2}}})
(sqrt(e^x))^'
(\sqrt{e^{x}})^{\prime\:}
integral of 9/(x(x^4+7))
\int\:\frac{9}{x(x^{4}+7)}dx
integral of 2x^2cos(x^3)
\int\:2x^{2}\cos(x^{3})dx
1
..
1425
1426
1427
1428
1429
..
2459