Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of e^{x^2-y^2}sin(2xy)
\frac{d}{dx}(e^{x^{2}-y^{2}}\sin(2xy))
integral of cos(1-x)
\int\:\cos(1-x)dx
simplify 2cos(x^3)-2/x
simplify\:2\cos(x^{3})-\frac{2}{x}
normal of y=4x-1,(1,-4)
normal\:y=4x-1,(1,-4)
(\partial)/(\partial x)(4xsin(xy))
\frac{\partial\:}{\partial\:x}(4x\sin(xy))
derivative of e^xcos(8x)
\frac{d}{dx}(e^{x}\cos(8x))
tangent of f(x)= x/(x-3),\at x=1
tangent\:f(x)=\frac{x}{x-3},\at\:x=1
(\partial)/(\partial x)(3x^2+xy+y^2-8)
\frac{\partial\:}{\partial\:x}(3x^{2}+xy+y^{2}-8)
(\partial)/(\partial x)(6/(x-2)+7x)
\frac{\partial\:}{\partial\:x}(\frac{6}{x-2}+7x)
integral of (x^2-5x+2)
\int\:(x^{2}-5x+2)dx
derivative of log_{e}(3x)
\frac{d}{dx}(\log_{e}(3x))
(\partial)/(\partial y)(xe^{2xy})
\frac{\partial\:}{\partial\:y}(xe^{2xy})
slope of y=e^x,(1,e)
slope\:y=e^{x},(1,e)
integral from 15 to 30 of 12
\int\:_{15}^{30}12dx
inverse oflaplace 1/(x^2(x^2+1))
inverselaplace\:\frac{1}{x^{2}(x^{2}+1)}
(\partial)/(\partial x)(θ)
\frac{\partial\:}{\partial\:x}(θ)
integral of 1/x (1/x+sqrt(x))^2
\int\:\frac{1}{x}(\frac{1}{x}+\sqrt{x})^{2}dx
area (37)/(x^3),1,100
area\:\frac{37}{x^{3}},1,100
y^'+8y=1,y(0)=1
y^{\prime\:}+8y=1,y(0)=1
laplacetransform f(t)=e^{2t+1}
laplacetransform\:f(t)=e^{2t+1}
derivative of (-3x+8/(2sqrt(4-x)))
\frac{d}{dx}(\frac{-3x+8}{2\sqrt{4-x}})
derivative of (x-5/(4x^2e^x))
\frac{d}{dx}(\frac{x-5}{4x^{2}e^{x}})
limit as x approaches 0 of x^4cos(1/x)
\lim\:_{x\to\:0}(x^{4}\cos(\frac{1}{x}))
(e^{-2t})^'
(e^{-2t})^{\prime\:}
integral of (-6x^4+6)/(x^2+1)
\int\:\frac{-6x^{4}+6}{x^{2}+1}dx
integral of 1/(e^{10x)}
\int\:\frac{1}{e^{10x}}dx
derivative of x^3-3x^2-2x+1
\frac{d}{dx}(x^{3}-3x^{2}-2x+1)
derivative of 3x^{-3}
\frac{d}{dx}(3x^{-3})
integral of sqrt(t^2-2t^4)
\int\:\sqrt{t^{2}-2t^{4}}dt
derivative of f(x)=(4x+3)/(4x-3)
derivative\:f(x)=\frac{4x+3}{4x-3}
integral from-3 to 3 of (16)/(x^2-6x-55)
\int\:_{-3}^{3}\frac{16}{x^{2}-6x-55}dx
derivative of (1-e^x(x+e^x))
\frac{d}{dx}((1-e^{x})(x+e^{x}))
(\partial)/(\partial z)(x^2yz^2+sin(yz))
\frac{\partial\:}{\partial\:z}(x^{2}yz^{2}+\sin(yz))
integral of sqrt(1+(x^2)/(2-x^2))
\int\:\sqrt{1+\frac{x^{2}}{2-x^{2}}}dx
integral of (3^x)/(2^x)
\int\:\frac{3^{x}}{2^{x}}dx
limit as x approaches 0 of 15
\lim\:_{x\to\:0}(15)
integral of (6x)/(x^2+4)
\int\:\frac{6x}{x^{2}+4}dx
slope ofintercept (-2,7),(0,5)
slopeintercept\:(-2,7),(0,5)
d/(dv)(sqrt(u/v))
\frac{d}{dv}(\sqrt{\frac{u}{v}})
limit as x approaches 0 of (1+7x)^{5/x}
\lim\:_{x\to\:0}((1+7x)^{\frac{5}{x}})
(\partial)/(\partial y)(-xe^{-3xy})
\frac{\partial\:}{\partial\:y}(-xe^{-3xy})
integral from 0 to 1 of (1+x)^3
\int\:_{0}^{1}(1+x)^{3}dx
area y=3x-x^2,y=-4x
area\:y=3x-x^{2},y=-4x
integral of 8/(9+3x)
\int\:\frac{8}{9+3x}dx
t^3(dy)/(dt)+3t^2y=3cos(t),y(pi)=0
t^{3}\frac{dy}{dt}+3t^{2}y=3\cos(t),y(π)=0
integral of (5x^4-2)/(sqrt(x^5-2x+11))
\int\:\frac{5x^{4}-2}{\sqrt{x^{5}-2x+11}}dx
y^'+3y=e^{5t}
y^{\prime\:}+3y=e^{5t}
limit as x approaches-2 of-(x^2-4)/(x+2)
\lim\:_{x\to\:-2}(-\frac{x^{2}-4}{x+2})
integral of xe^{mx}
\int\:xe^{mx}dx
limit as x approaches 0 of (e^{5x}-1)/x
\lim\:_{x\to\:0}(\frac{e^{5x}-1}{x})
integral of cos(5x)sin(x)sin(8x)
\int\:\cos(5x)\sin(x)\sin(8x)dx
(dy)/(dx)=(xcos(x^2))/(4y)
\frac{dy}{dx}=\frac{x\cos(x^{2})}{4y}
derivative of cos^2(x+cos(x^2))
\frac{d}{dx}(\cos^{2}(x)+\cos(x^{2}))
y^'=-x/(4y)
y^{\prime\:}=-\frac{x}{4y}
derivative of y=(sin(3x))ln(x)
derivative\:y=(\sin(3x))\ln(x)
derivative of 48x^{1/2}
\frac{d}{dx}(48x^{\frac{1}{2}})
integral of 8/(x^2(x^2+25))
\int\:\frac{8}{x^{2}(x^{2}+25)}dx
f(x)= 2/(ln(x))
f(x)=\frac{2}{\ln(x)}
x^2yy^'=ey
x^{2}yy^{\prime\:}=ey
d/(dt)(t-\sqrt[3]{t})
\frac{d}{dt}(t-\sqrt[3]{t})
derivative of ((1-cos(x)/(1+cos(x)))^3)
\frac{d}{dx}((\frac{1-\cos(x)}{1+\cos(x)})^{3})
limit as x approaches-2-of 6x+5
\lim\:_{x\to\:-2-}(6x+5)
(\partial)/(\partial y)(xe^{x+y})
\frac{\partial\:}{\partial\:y}(xe^{x+y})
limit as x approaches 0 of (5-5sin(x))/x
\lim\:_{x\to\:0}(\frac{5-5\sin(x)}{x})
derivative of (5x+2^2)
\frac{d}{dx}((5x+2)^{2})
integral of ((3x)/(1+x^4))
\int\:(\frac{3x}{1+x^{4}})dx
integral from 0 to 2 of (e^x-e^{-x})^2
\int\:_{0}^{2}(e^{x}-e^{-x})^{2}dx
integral of sqrt(x)-3
\int\:\sqrt{x}-3dx
y^{''}-2y^'+y=e^xarctan(x)
y^{\prime\:\prime\:}-2y^{\prime\:}+y=e^{x}\arctan(x)
integral of xsin(14x)
\int\:x\sin(14x)dx
limit as x approaches-pi/2-of sec(x)
\lim\:_{x\to\:-\frac{π}{2}-}(\sec(x))
tangent of f(x)=4sin(x),(pi/6 ,2)
tangent\:f(x)=4\sin(x),(\frac{π}{6},2)
derivative of tanh(x^2-9)
\frac{d}{dx}(\tanh(x^{2}-9))
limit as x approaches 7 of x^4
\lim\:_{x\to\:7}(x^{4})
integral of (6x-5)sqrt((3x^2-5x)^3)
\int\:(6x-5)\sqrt{(3x^{2}-5x)^{3}}dx
integral of y^{3/2}
\int\:y^{\frac{3}{2}}dy
derivative of ln(cos(t))
derivative\:\ln(\cos(t))
derivative of (x^2-5x^4)
\frac{d}{dx}((x^{2}-5x)^{4})
sum from n=1 to infinity}(((-1)^{(n-1) of))/(((2n-1)^3))
\sum\:_{n=1}^{\infty\:}\frac{((-1)^{(n-1)})}{((2n-1)^{3})}
integral of (x^2-4x+5)/((x^2-1)(x+3))
\int\:\frac{x^{2}-4x+5}{(x^{2}-1)(x+3)}dx
integral from 1 to 4 of xln(x)
\int\:_{1}^{4}x\ln(x)dx
integral of sec(x)csc(x)
\int\:\sec(x)\csc(x)dx
integral of x^2-4x
\int\:x^{2}-4xdx
(\partial)/(\partial x)((5y)/(\sqrt[3]{x)})
\frac{\partial\:}{\partial\:x}(\frac{5y}{\sqrt[3]{x}})
tangent of f(x)=2x^2-9x+10,\at x=1
tangent\:f(x)=2x^{2}-9x+10,\at\:x=1
y^'+1/x y= 2/3 x^4y^4
y^{\prime\:}+\frac{1}{x}y=\frac{2}{3}x^{4}y^{4}
derivative of y=x^2+2x+11
derivative\:y=x^{2}+2x+11
(dy)/(dx)=e(3x+2y)
\frac{dy}{dx}=e(3x+2y)
derivative of ln(3x+2x^2)
\frac{d}{dx}(\ln(3x+2x^{2}))
derivative of 7e^xcsc(x)
\frac{d}{dx}(7e^{x}\csc(x))
limit as x approaches 7.6 of 8.6x+1.8
\lim\:_{x\to\:7.6}(8.6x+1.8)
tangent of f(x)=-x^2-4x+4,\at x=-2
tangent\:f(x)=-x^{2}-4x+4,\at\:x=-2
derivative of (1-3x+x^3)/(x^3)
derivative\:\frac{1-3x+x^{3}}{x^{3}}
derivative of sin(xy)
\frac{d}{dx}(\sin(xy))
derivative of (8x-x^2^3)
\frac{d}{dx}((8x-x^{2})^{3})
integral of (1-sin^2(x))
\int\:(1-\sin^{2}(x))dx
derivative of-4.9x^2+37
\frac{d}{dx}(-4.9x^{2}+37)
integral from 0 to pi of sin(mx)e^{nx}
\int\:_{0}^{π}\sin(mx)e^{nx}dx
integral of sin((xpi)/2)
\int\:\sin(\frac{xπ}{2})dx
integral of ((x-1)^3)/(x^2)
\int\:\frac{(x-1)^{3}}{x^{2}}dx
1
..
344
345
346
347
348
..
2459