Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
taylor (cos(x))^2pi
taylor\:(\cos(x))^{2}π
y^'=(x-3)/(y+5)
y^{\prime\:}=\frac{x-3}{y+5}
derivative of-2e^{4x}
\frac{d}{dx}(-2e^{4x})
integral of 1/(5(2x-1))
\int\:\frac{1}{5(2x-1)}dx
derivative of f(x)=xsqrt(x)
derivative\:f(x)=x\sqrt{x}
taylor x*cos(x),1
taylor\:x\cdot\:\cos(x),1
limit as x approaches 3 of (x^2-9)/3
\lim\:_{x\to\:3}(\frac{x^{2}-9}{3})
tangent of y=11-6e^x,(0,5)
tangent\:y=11-6e^{x},(0,5)
limit as x approaches 0 of (ln(x))/(x-1)
\lim\:_{x\to\:0}(\frac{\ln(x)}{x-1})
integral of 21arctan(sqrt(x))
\int\:21\arctan(\sqrt{x})dx
limit as x approaches 0 of (e^x-1)/(4x)
\lim\:_{x\to\:0}(\frac{e^{x}-1}{4x})
integral of x(ax^2+b)^3
\int\:x(ax^{2}+b)^{3}dx
integral of-pisin(pix)
\int\:-π\sin(πx)dx
derivative of 5/(6x)
\frac{d}{dx}(\frac{5}{6x})
d/(dy)(1)
\frac{d}{dy}(1)
laplacetransform {e^tsin(3t)}
laplacetransform\:\left\{e^{t}\sin(3t)\right\}
sum from n=1 to infinity of (ln(6n))/n
\sum\:_{n=1}^{\infty\:}\frac{\ln(6n)}{n}
inverse oflaplace (1/2)/(s^2+2s+3)
inverselaplace\:\frac{\frac{1}{2}}{s^{2}+2s+3}
3(3x^2+y^2)dx-2xydy=0
3(3x^{2}+y^{2})dx-2xydy=0
t+ye^{2ty}+te^{2ty}(dy)/(dt)=0
t+ye^{2ty}+te^{2ty}\frac{dy}{dt}=0
(\partial)/(\partial x)(2e^{-2xy}+xy^3)
\frac{\partial\:}{\partial\:x}(2e^{-2xy}+xy^{3})
derivative of (sin(x)/(1+tan(x)))
\frac{d}{dx}(\frac{\sin(x)}{1+\tan(x)})
tangent of x+3/x ,\at x=2
tangent\:x+\frac{3}{x},\at\:x=2
derivative of f(x)=4-2x
derivative\:f(x)=4-2x
limit as x approaches 2 of ((x^6-64))/(x-2)
\lim\:_{x\to\:2}(\frac{(x^{6}-64)}{x-2})
derivative of f(x)=2x
derivative\:f(x)=2x
integral of 1/((s-1)^2)
\int\:\frac{1}{(s-1)^{2}}ds
sum from n=2 to infinity of 1/(n-ln(n))
\sum\:_{n=2}^{\infty\:}\frac{1}{n-\ln(n)}
integral of sin(2)(θ)cos(θ)
\int\:\sin(2)(θ)\cos(θ)dθ
limit as x approaches 1 of (1-x)/(x^2+1)
\lim\:_{x\to\:1}(\frac{1-x}{x^{2}+1})
implicit (dy)/(dx),x^3+y^3=6xy-1
implicit\:\frac{dy}{dx},x^{3}+y^{3}=6xy-1
integral of 1/(x^3+2x^2+x)
\int\:\frac{1}{x^{3}+2x^{2}+x}dx
inverse oflaplace 1/(s((s+2)^2+1))
inverselaplace\:\frac{1}{s((s+2)^{2}+1)}
sum from n=1 to infinity of 6e^{-8n}
\sum\:_{n=1}^{\infty\:}6e^{-8n}
limit as x approaches 0 of 2-sqrt(x)
\lim\:_{x\to\:0}(2-\sqrt{x})
integral of-e^{-st}
\int\:-e^{-st}dt
integral of 2/(e^t)
\int\:\frac{2}{e^{t}}dt
(\partial)/(\partial y)(1/(x^2+y^2-1))
\frac{\partial\:}{\partial\:y}(\frac{1}{x^{2}+y^{2}-1})
(dy)/(dx)=(2xy)/((x^2-y^2))
\frac{dy}{dx}=\frac{2xy}{(x^{2}-y^{2})}
(dy)/(dx)-5y=-5/2 xy^3
\frac{dy}{dx}-5y=-\frac{5}{2}xy^{3}
integral of x/(x^2+6)
\int\:\frac{x}{x^{2}+6}dx
y^{''}-9y^'+18y=0,y(0)=-5,y^'(0)=2
y^{\prime\:\prime\:}-9y^{\prime\:}+18y=0,y(0)=-5,y^{\prime\:}(0)=2
tangent of f(x)=9x^2-x^3,(2,28)
tangent\:f(x)=9x^{2}-x^{3},(2,28)
derivative of 1/(3x^5)
\frac{d}{dx}(\frac{1}{3x^{5}})
derivative of f(x)=((sin(x))/x)^2
derivative\:f(x)=(\frac{\sin(x)}{x})^{2}
integral of 4x^{2/3}
\int\:4x^{\frac{2}{3}}dx
(\partial)/(\partial y)(sqrt(3x+2xy^2))
\frac{\partial\:}{\partial\:y}(\sqrt{3x+2xy^{2}})
integral of 4/((x^2+5x-14))
\int\:\frac{4}{(x^{2}+5x-14)}dx
limit as x approaches 2 of 2x^2-3
\lim\:_{x\to\:2}(2x^{2}-3)
limit as x approaches-1+of 1/(x^2-1)
\lim\:_{x\to\:-1+}(\frac{1}{x^{2}-1})
integral of (2x^3+x^2-21x+24)/(x^2+2x-8)
\int\:\frac{2x^{3}+x^{2}-21x+24}{x^{2}+2x-8}dx
integral of 9x^2-4
\int\:9x^{2}-4dx
tangent of f(x)=4x^2+2,\at x=-2
tangent\:f(x)=4x^{2}+2,\at\:x=-2
(d^2y)/(dt^2)=1-e^{2t}
\frac{d^{2}y}{dt^{2}}=1-e^{2t}
d/(ds)(ln(3))
\frac{d}{ds}(\ln(3))
integral of 1/(9+sqrt(2x))
\int\:\frac{1}{9+\sqrt{2x}}dx
area 2y=3sqrt(x),2y+3x=6,y=-3
area\:2y=3\sqrt{x},2y+3x=6,y=-3
derivative of f(x)=(2x^2-5x)/(3x+5)
derivative\:f(x)=\frac{2x^{2}-5x}{3x+5}
integral from-5 to 5 of x
\int\:_{-5}^{5}xdx
(dy)/(dx)=(4y^2-x^4)/(4xy)
\frac{dy}{dx}=\frac{4y^{2}-x^{4}}{4xy}
derivative of tan(7x)
derivative\:\tan(7x)
integral of 4(x-1)ln(x-1)
\int\:4(x-1)\ln(x-1)dx
y^'-3/x y=(y^4)/(x^7)
y^{\prime\:}-\frac{3}{x}y=\frac{y^{4}}{x^{7}}
derivative of 4sin^2(3x)
\frac{d}{dx}(4\sin^{2}(3x))
y^{''}+10y^'+25y=e^{-4x}(x^2+2x-4)
y^{\prime\:\prime\:}+10y^{\prime\:}+25y=e^{-4x}(x^{2}+2x-4)
x^{''}-2x=0
x^{\prime\:\prime\:}-2x=0
derivative of cos^2(e^x)
\frac{d}{dx}(\cos^{2}(e^{x}))
slope of (7,-2),(3,5)
slope\:(7,-2),(3,5)
derivative of (1-x^2^{-1/2})
\frac{d}{dx}((1-x^{2})^{-\frac{1}{2}})
tangent of f(x)=sqrt(x),(49,7)
tangent\:f(x)=\sqrt{x},(49,7)
derivative of (4x)/(5-cot(x))
derivative\:\frac{4x}{5-\cot(x)}
(\partial)/(\partial y)(x^{y/z})
\frac{\partial\:}{\partial\:y}(x^{\frac{y}{z}})
(\partial)/(\partial x)(x^3y^2z)
\frac{\partial\:}{\partial\:x}(x^{3}y^{2}z)
integral of (x^2+2)/(x(x-1)^3)
\int\:\frac{x^{2}+2}{x(x-1)^{3}}dx
derivative of-x-(16/x)
\frac{d}{dx}(-x-\frac{16}{x})
derivative of f(x)=sin(ln(x))
derivative\:f(x)=\sin(\ln(x))
(dP)/(dt)=P*(0.0005*P-0.1),P(0)=300
\frac{dP}{dt}=P\cdot\:(0.0005\cdot\:P-0.1),P(0)=300
integral of x^p
\int\:x^{p}dx
integral from 2 to 4 of (x^2(2x-3))/6
\int\:_{2}^{4}\frac{x^{2}(2x-3)}{6}dx
(\partial)/(\partial x)(x/(x^2+y^2)+x)
\frac{\partial\:}{\partial\:x}(\frac{x}{x^{2}+y^{2}}+x)
derivative of f(x)=x^2*ln(x)
derivative\:f(x)=x^{2}\cdot\:\ln(x)
derivative of-6/(sqrt(x))
\frac{d}{dx}(-\frac{6}{\sqrt{x}})
integral from-5 to 5 of e
\int\:_{-5}^{5}edx
limit as x approaches 4 of (4-x)/(x-4)
\lim\:_{x\to\:4}(\frac{4-x}{x-4})
limit as x approaches 1 of 1/((x^2-1))
\lim\:_{x\to\:1}(\frac{1}{(x^{2}-1)})
integral from-4 to 0 of f(x)
\int\:_{-4}^{0}f(x)dx
sum from n=1 to infinity of cos^n(1)
\sum\:_{n=1}^{\infty\:}\cos^{n}(1)
sum from n=0 to infinity of (0.02)^n
\sum\:_{n=0}^{\infty\:}(0.02)^{n}
integral of 5e^x
\int\:5e^{x}dx
integral of 3/(100+3t)
\int\:\frac{3}{100+3t}dt
limit as x approaches 4 of x-4
\lim\:_{x\to\:4}(x-4)
integral from 1 to 16 of (x-3)/(sqrt(x))
\int\:_{1}^{16}\frac{x-3}{\sqrt{x}}dx
integral of e^tsin(t)
\int\:e^{t}\sin(t)dt
y^'=1+4y^2
y^{\prime\:}=1+4y^{2}
(\partial)/(\partial t)(e^{2t})
\frac{\partial\:}{\partial\:t}(e^{2t})
tangent of f(x)=(6x)/(x+5),\at x=-3
tangent\:f(x)=\frac{6x}{x+5},\at\:x=-3
d/(dt)(\sqrt[3]{t^3+s}+\sqrt[3]{s^3+t})
\frac{d}{dt}(\sqrt[3]{t^{3}+s}+\sqrt[3]{s^{3}+t})
derivative of ln(2x^2+5)
\frac{d}{dx}(\ln(2x^{2}+5))
integral of (1+x+x^2+x^3)
\int\:(1+x+x^{2}+x^{3})dx
derivative of asin(ax)
\frac{d}{dx}(a\sin(ax))
1
..
547
548
549
550
551
..
2459