Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of |x^3+3x^2-24x-80|
\frac{d}{dx}(\left|x^{3}+3x^{2}-24x-80\right|)
tangent of f(x)=x^3,\at x=0
tangent\:f(x)=x^{3},\at\:x=0
derivative of f(x)=(3x^2-18x+15)/5
derivative\:f(x)=\frac{3x^{2}-18x+15}{5}
derivative of (3sin(x)/(3+cos(x)))
\frac{d}{dx}(\frac{3\sin(x)}{3+\cos(x)})
(\partial)/(\partial y)(2x^3y+4)
\frac{\partial\:}{\partial\:y}(2x^{3}y+4)
integral of (x^{3/2}+1)^2
\int\:(x^{\frac{3}{2}}+1)^{2}dx
f(x)=sin(sin(sin(x)))
f(x)=\sin(\sin(\sin(x)))
implicit (dy)/(dx),e^{xy}+x^2-y^2=12
implicit\:\frac{dy}{dx},e^{xy}+x^{2}-y^{2}=12
(\partial)/(\partial θ)(sin(θ))
\frac{\partial\:}{\partial\:θ}(\sin(θ))
integral of e^{-x}+4^x
\int\:e^{-x}+4^{x}dx
derivative of a*ln(x)
\frac{d}{dx}(a\cdot\:\ln(x))
limit as x approaches 5 of 5sqrt(x-5)
\lim\:_{x\to\:5}(5\sqrt{x-5})
integral of x^3sqrt(5x^4+20)
\int\:x^{3}\sqrt{5x^{4}+20}dx
sum from n=0 to infinity of (1/17)^n
\sum\:_{n=0}^{\infty\:}(\frac{1}{17})^{n}
tangent of f(x)=(4x+5)/(x-1),\at x=2
tangent\:f(x)=\frac{4x+5}{x-1},\at\:x=2
limit as x approaches 0 of (sin(5x))/(6x)
\lim\:_{x\to\:0}(\frac{\sin(5x)}{6x})
derivative of f(x)=3sec(5x)
derivative\:f(x)=3\sec(5x)
(\partial)/(\partial x)(17/2 x^4y)
\frac{\partial\:}{\partial\:x}(\frac{17}{2}x^{4}y)
tangent of f(x)=x^2+sqrt(x),\at x=1
tangent\:f(x)=x^{2}+\sqrt{x},\at\:x=1
derivative of (1-6t)/(5+t)
derivative\:\frac{1-6t}{5+t}
integral of 11tan^4(xse)c^6x
\int\:11\tan^{4}(xse)c^{6}xdx
area x,x^2
area\:x,x^{2}
derivative of 1-e^{3x}
\frac{d}{dx}(1-e^{3x})
integral from 0 to 2 of x^2(1-0.5x)
\int\:_{0}^{2}x^{2}(1-0.5x)dx
integral from 1 to 2 of (sqrt(x^2-1))/x
\int\:_{1}^{2}\frac{\sqrt{x^{2}-1}}{x}dx
sum from n=1 to infinity of 1/(3^n+2)
\sum\:_{n=1}^{\infty\:}\frac{1}{3^{n}+2}
laplacetransform tcos(2t)
laplacetransform\:t\cos(2t)
sum from k=0 to infinity of (e/(10))^k
\sum\:_{k=0}^{\infty\:}(\frac{e}{10})^{k}
limit as x approaches 1-of-x^2+3x-4
\lim\:_{x\to\:1-}(-x^{2}+3x-4)
laplacetransform f(t)=4e^{-7t}cos(9t)
laplacetransform\:f(t)=4e^{-7t}\cos(9t)
derivative of e^x(cos(x))
\frac{d}{dx}(e^{x}(\cos(x)))
(\partial)/(\partial y)(4x^2y^3+4)
\frac{\partial\:}{\partial\:y}(4x^{2}y^{3}+4)
d/(dt)(t^2sin(wt))
\frac{d}{dt}(t^{2}\sin(wt))
integral of 1/((x^2+3)^{3/2)}
\int\:\frac{1}{(x^{2}+3)^{\frac{3}{2}}}dx
integral of 1/(sqrt(9x^2+36x+35))
\int\:\frac{1}{\sqrt{9x^{2}+36x+35}}dx
tangent of y=(8x)/(x^2-1),(3,3)
tangent\:y=\frac{8x}{x^{2}-1},(3,3)
y^{''}+625y=sec(25x)
y^{\prime\:\prime\:}+625y=\sec(25x)
taylor e^{5x}
taylor\:e^{5x}
integral of e^{-1+x}
\int\:e^{-1+x}dx
(\partial)/(\partial r)(e^rsin(st))
\frac{\partial\:}{\partial\:r}(e^{r}\sin(st))
taylor 1/((1-3x^2)),x=0.577
taylor\:\frac{1}{(1-3x^{2})},x=0.577
limit as x approaches 10 of+(2x)
\lim\:_{x\to\:10}(+(2x))
derivative of (2x^3+2)(x^4-3x)
derivative\:(2x^{3}+2)(x^{4}-3x)
integral of x/(sqrt(x^2-1))
\int\:\frac{x}{\sqrt{x^{2}-1}}dx
derivative of a^{sqrt(cos(x)})
\frac{d}{dx}(a^{\sqrt{\cos(x)}})
integral of (u+1)/(u^2+1)
\int\:\frac{u+1}{u^{2}+1}du
derivative of f(x)=cos^4(sin^3(x))
derivative\:f(x)=\cos^{4}(\sin^{3}(x))
tangent of f(x)=x^4+7x^2-x,\at x=1
tangent\:f(x)=x^{4}+7x^{2}-x,\at\:x=1
taylor ((x^2+1))/((x+1)),1
taylor\:\frac{(x^{2}+1)}{(x+1)},1
(\partial)/(\partial u)(u-uv)
\frac{\partial\:}{\partial\:u}(u-uv)
derivative of 2/(x^4)
derivative\:\frac{2}{x^{4}}
f(y)=yln(1+e^y)
f(y)=y\ln(1+e^{y})
integral of (cos(x))/(sin^3(x)-cos^3(x))
\int\:\frac{\cos(x)}{\sin^{3}(x)-\cos^{3}(x)}dx
derivative of sin(2x+2xcos(2x))
\frac{d}{dx}(\sin(2x)+2x\cos(2x))
derivative of f(x)=(e^x)/(1+e^x)
derivative\:f(x)=\frac{e^{x}}{1+e^{x}}
integral of (x^2)/((16-x^3)^2)
\int\:\frac{x^{2}}{(16-x^{3})^{2}}dx
limit as x approaches-4+of (x+3)/(x+4)
\lim\:_{x\to\:-4+}(\frac{x+3}{x+4})
integral of x^2sec^2(x)tan(x)
\int\:x^{2}\sec^{2}(x)\tan(x)dx
area y=x^2-4,y=2-5x^2
area\:y=x^{2}-4,y=2-5x^{2}
limit as x approaches 0 of (6sin(2x))/x
\lim\:_{x\to\:0}(\frac{6\sin(2x)}{x})
slope of (2,-14),(1,-11)
slope\:(2,-14),(1,-11)
integral of 5/(x^3+2x^2-35x)
\int\:\frac{5}{x^{3}+2x^{2}-35x}dx
derivative of u^9
derivative\:u^{9}
derivative of 2xe^x+e^{xx^2}
\frac{d}{dx}(2xe^{x}+e^{xx^{2}})
integral of 2cos(sqrt(9x))
\int\:2\cos(\sqrt{9x})dx
area y=4-x^2,x=0,x=2
area\:y=4-x^{2},x=0,x=2
derivative of tan(x-0.5x)
\frac{d}{dx}(\tan(x)-0.5x)
(dy)/(dx)=xy-3x-2y+6
\frac{dy}{dx}=xy-3x-2y+6
derivative of (sin(x)^x)
\frac{d}{dx}((\sin(x))^{x})
integral of 5xln(x)
\int\:5x\ln(x)dx
limit as x approaches 8+of ln(x-8)
\lim\:_{x\to\:8+}(\ln(x-8))
limit as x approaches 5 of sqrt(4x+5)
\lim\:_{x\to\:5}(\sqrt{4x+5})
tangent of y=-t^3,(2,-8)
tangent\:y=-t^{3},(2,-8)
area x^2+x-2,-1,3
area\:x^{2}+x-2,-1,3
tangent of f(x)=-1/x ,\at x=3
tangent\:f(x)=-\frac{1}{x},\at\:x=3
tangent of f(x)=2x^2+3x,\at x=-3
tangent\:f(x)=2x^{2}+3x,\at\:x=-3
(\partial ^2)/(\partial x\partial y)(ln(2+x^2y^2))
\frac{\partial\:^{2}}{\partial\:x\partial\:y}(\ln(2+x^{2}y^{2}))
integral of e^{2x}arcsin(e^x)
\int\:e^{2x}\arcsin(e^{x})dx
laplacetransform k_{p}*e(t)
laplacetransform\:k_{p}\cdot\:e(t)
limit as x approaches-4 of-x^2+6x-8
\lim\:_{x\to\:-4}(-x^{2}+6x-8)
limit as x approaches 1 of (x-1)/x
\lim\:_{x\to\:1}(\frac{x-1}{x})
derivative of x/(sqrt(x-8))
\frac{d}{dx}(\frac{x}{\sqrt{x-8}})
limit as x approaches 2-of ln(5-2x)
\lim\:_{x\to\:2-}(\ln(5-2x))
limit as x approaches 0 of (tan(2x))^2
\lim\:_{x\to\:0}((\tan(2x))^{2})
derivative of e^{2x}y
\frac{d}{dx}(e^{2x}y)
integral of-3tan(x)
\int\:-3\tan(x)dx
y^'=(5x^6e^{y/x}+x^4y^2)/(x^5y)
y^{\prime\:}=\frac{5x^{6}e^{\frac{y}{x}}+x^{4}y^{2}}{x^{5}y}
expand (e^x+1)^7
expand\:(e^{x}+1)^{7}
8y^'+ty=7
8y^{\prime\:}+ty=7
derivative of \sqrt[5]{x^2+ln(x^2})
\frac{d}{dx}(\sqrt[5]{x^{2}+\ln(x^{2})})
tangent of 1/(x-1)
tangent\:\frac{1}{x-1}
integral of (8z^2+2)/(2z^3+z)
\int\:\frac{8z^{2}+2}{2z^{3}+z}
derivative of (e^xcos(x)/(e^x-1))
\frac{d}{dx}(\frac{e^{x}\cos(x)}{e^{x}-1})
d/(dt)(4cos(2t))
\frac{d}{dt}(4\cos(2t))
(dy)/(dx)=(y/(y-x))
\frac{dy}{dx}=(\frac{y}{y-x})
derivative of x(x+4^{1/3})
\frac{d}{dx}(x(x+4)^{\frac{1}{3}})
limit as x approaches 0-of x^3+2x+2
\lim\:_{x\to\:0-}(x^{3}+2x+2)
y^'= x/y+y/x
y^{\prime\:}=\frac{x}{y}+\frac{y}{x}
area y=6+2sqrt(x),y=(12+x)/2
area\:y=6+2\sqrt{x},y=\frac{12+x}{2}
derivative of 2(x^2-1)
\frac{d}{dx}(2(x^{2}-1))
1
..
647
648
649
650
651
..
2459