Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
slope of h=(xx^2+2),(x+h,(x+h)^2+2)
slope\:h=(xx^{2}+2),(x+h,(x+h)^{2}+2)
integral of (2x)/(sqrt(x^2-27))
\int\:\frac{2x}{\sqrt{x^{2}-27}}dx
integral of 3/2 x
\int\:\frac{3}{2}xdx
y^'=ysin(4x)
y^{\prime\:}=y\sin(4x)
d/(dy)(2xsin(y))
\frac{d}{dy}(2x\sin(y))
(\partial)/(\partial x)(-(x-4)^2-(y-1)^2)
\frac{\partial\:}{\partial\:x}(-(x-4)^{2}-(y-1)^{2})
integral of 1/(sqrt(x))
\int\:\frac{1}{\sqrt{x}}dx
integral of 1/(81+16x^2)
\int\:\frac{1}{81+16x^{2}}dx
y^'+y=sin(2t)
y^{\prime\:}+y=\sin(2t)
(\partial)/(\partial y)(xy+yz)
\frac{\partial\:}{\partial\:y}(xy+yz)
limit as x approaches-1-of (-1)/(x^2-1)
\lim\:_{x\to\:-1-}(\frac{-1}{x^{2}-1})
taylor sqrt(1+x^3)
taylor\:\sqrt{1+x^{3}}
derivative of e^{{r}(xx})
\frac{d}{dx}(e^{{r}(x)x})
d/(dy)(sin(x)cos(y))
\frac{d}{dy}(\sin(x)\cos(y))
tangent of f(x)=e^{-x^2},\at x=5
tangent\:f(x)=e^{-x^{2}},\at\:x=5
limit as x approaches 0 of-3/(1-3x)
\lim\:_{x\to\:0}(-\frac{3}{1-3x})
derivative of f(x)=cot^2(sin(θ))
derivative\:f(x)=\cot^{2}(\sin(θ))
derivative of sec(xy)
\frac{d}{dx}(\sec(x)y)
(dy)/(dt)=y-5
\frac{dy}{dt}=y-5
integral of (5x^2+4)^3
\int\:(5x^{2}+4)^{3}dx
limit as x approaches-2 of 3-4x
\lim\:_{x\to\:-2}(3-4x)
limit as (x,y) approaches (0,0) of v/u
\lim\:_{(x,y)\to\:(0,0)}(\frac{v}{u})
y^{''}-y^'+y=2sin(3x)
y^{\prime\:\prime\:}-y^{\prime\:}+y=2\sin(3x)
derivative of (-xsin(x)-cos(x))/(6x^2)
derivative\:\frac{-x\sin(x)-\cos(x)}{6x^{2}}
(dy)/(dx)=xe^x
\frac{dy}{dx}=xe^{x}
tangent of f(x)=-3x^2-4x-2,\at x=2
tangent\:f(x)=-3x^{2}-4x-2,\at\:x=2
integral of xsqrt(x+1)
\int\:x\sqrt{x+1}dx
integral from 0 to 1 of 4cos((pit)/2)
\int\:_{0}^{1}4\cos(\frac{πt}{2})dt
integral of 2e^{3x}sin(2x)
\int\:2e^{3x}\sin(2x)dx
integral from 0 to 7r of sqrt(49r^2-y^2)
\int\:_{0}^{7r}\sqrt{49r^{2}-y^{2}}dy
integral of ln(1+r^2)r
\int\:\ln(1+r^{2})rdr
(\partial)/(\partial x)(yzln(xy))
\frac{\partial\:}{\partial\:x}(yz\ln(xy))
y(x+y+1)dx+(x+2y)dy=0
y(x+y+1)dx+(x+2y)dy=0
x^{''}-2x-5=0,x(0)=1,x(1)=3
x^{\prime\:\prime\:}-2x-5=0,x(0)=1,x(1)=3
integral of (39)/((1-x^2)^{3/2)}
\int\:\frac{39}{(1-x^{2})^{\frac{3}{2}}}dx
derivative of 5x(1-x/5)^2
derivative\:5x(1-\frac{x}{5})^{2}
limit as x approaches 2 of 2x-3
\lim\:_{x\to\:2}(2x-3)
integral of 6z
\int\:6zdz
(y^2)/x (dy)/(dx)-(sqrt(y^3+1))e^{3x}=0
\frac{y^{2}}{x}\frac{dy}{dx}-(\sqrt{y^{3}+1})e^{3x}=0
derivative of (x-1sqrt(x^2-2x+2))
\frac{d}{dx}((x-1)\sqrt{x^{2}-2x+2})
limit as x approaches-8 of ln(x+8)
\lim\:_{x\to\:-8}(\ln(x+8))
derivative of sqrt(x^2-9x+25)
\frac{d}{dx}(\sqrt{x^{2}-9x+25})
y^'=-(3y)/t-2-t^{-4}
y^{\prime\:}=-\frac{3y}{t}-2-t^{-4}
sum from n=0 to infinity of (e^n)/(3^n)
\sum\:_{n=0}^{\infty\:}\frac{e^{n}}{3^{n}}
integral from 1/3 to 1 of (y+4)/(y^2+2y)
\int\:_{\frac{1}{3}}^{1}\frac{y+4}{y^{2}+2y}dy
derivative of f(x)=\sqrt[9]{x}-9e^x
derivative\:f(x)=\sqrt[9]{x}-9e^{x}
limit as x approaches (3pi)/2 of ln(1+sin(x))
\lim\:_{x\to\:\frac{3π}{2}}(\ln(1+\sin(x)))
d/(dy)(sqrt(2x+3y))
\frac{d}{dy}(\sqrt{2x+3y})
integral from 4 to 8 of x/(x^2-1)
\int\:_{4}^{8}\frac{x}{x^{2}-1}dx
derivative of 3xe^{sqrt(x)}
\frac{d}{dx}(3xe^{\sqrt{x}})
derivative of y=e^{8x}cos(11x)
derivative\:y=e^{8x}\cos(11x)
derivative of f(x)=5(1-x^2)^9
derivative\:f(x)=5(1-x^{2})^{9}
integral of 1/((5x-3)(3-4x))
\int\:\frac{1}{(5x-3)(3-4x)}dx
(\partial)/(\partial x)((14x)/(7x^2+y^2+6))
\frac{\partial\:}{\partial\:x}(\frac{14x}{7x^{2}+y^{2}+6})
area y=2x,(-3,3)
area\:y=2x,(-3,3)
integral from 0 to pi/(32) of cos(8x)
\int\:_{0}^{\frac{π}{32}}\cos(8x)dx
derivative of ln(sqrt(2-x))
derivative\:\ln(\sqrt{2-x})
sum from n=0 to infinity of 6(-1/3)^n
\sum\:_{n=0}^{\infty\:}6(-\frac{1}{3})^{n}
(\partial)/(\partial x)(cos^6(x^4y^5))
\frac{\partial\:}{\partial\:x}(\cos^{6}(x^{4}y^{5}))
integral of sqrt(2+x^2)
\int\:\sqrt{2+x^{2}}dx
tangent of x^3-10x^2+12x+3
tangent\:x^{3}-10x^{2}+12x+3
integral of (3x^4)/2-4x^{3/2}
\int\:\frac{3x^{4}}{2}-4x^{\frac{3}{2}}dx
derivative of f(x)=(e^x+e^{-x})/2
derivative\:f(x)=\frac{e^{x}+e^{-x}}{2}
(dy)/(dx)=(5x+2y)/(5x+2y+2)
\frac{dy}{dx}=\frac{5x+2y}{5x+2y+2}
(d^2y)/(dx^2)=0
\frac{d^{2}y}{dx^{2}}=0
11x-4ysqrt(x^2+1)y^'=0,y(0)=3
11x-4y\sqrt{x^{2}+1}y^{\prime\:}=0,y(0)=3
(dy}{dx}=\frac{y+xcos^2(y/x))/x
\frac{dy}{dx}=\frac{y+x\cos^{2}(\frac{y}{x})}{x}
derivative of (0.9e^x/(tan(x)))
\frac{d}{dx}(\frac{0.9e^{x}}{\tan(x)})
limit as x approaches 2 of (4x+1)^{1/2}
\lim\:_{x\to\:2}((4x+1)^{\frac{1}{2}})
integral of (4x^2+5)/(0.4x^3+1.5x)
\int\:\frac{4x^{2}+5}{0.4x^{3}+1.5x}dx
(\partial)/(\partial x)(sin(x^2-3xy))
\frac{\partial\:}{\partial\:x}(\sin(x^{2}-3xy))
integral from 2 to 5 of 1/(x-3)
\int\:_{2}^{5}\frac{1}{x-3}dx
derivative of ((x^2+3x))/((2x+3)^3)
derivative\:\frac{(x^{2}+3x)}{(2x+3)^{3}}
integral of ln(x+x^2)
\int\:\ln(x+x^{2})dx
integral of x^2(7-x^3)^{2/3}
\int\:x^{2}(7-x^{3})^{\frac{2}{3}}dx
derivative of tan(x^2-4x)
\frac{d}{dx}(\tan(x^{2}-4x))
limit as x approaches-infinity of x^3-5x^2
\lim\:_{x\to\:-\infty\:}(x^{3}-5x^{2})
integral of x^2*sqrt(x-5)
\int\:x^{2}\cdot\:\sqrt{x-5}dx
derivative of y=x^2(x^3-1)^5
derivative\:y=x^{2}(x^{3}-1)^{5}
normal of y=sqrt(2x+1),\at x=4
normal\:y=\sqrt{2x+1},\at\:x=4
tangent of (x-y-1)^3=x
tangent\:(x-y-1)^{3}=x
sum from n=1 to infinity of (x^n)/(3^n)
\sum\:_{n=1}^{\infty\:}\frac{x^{n}}{3^{n}}
derivative of (x^2-x-2/(x^2-6x+9))
\frac{d}{dx}(\frac{x^{2}-x-2}{x^{2}-6x+9})
limit as x approaches 1 of (x+1)/(x+2)
\lim\:_{x\to\:1}(\frac{x+1}{x+2})
f^'(x)=x^4-3x^3-6x^2+6x-1
f^{\prime\:}(x)=x^{4}-3x^{3}-6x^{2}+6x-1
integral from 1 to 3 of 5x^3ln(x)
\int\:_{1}^{3}5x^{3}\ln(x)dx
integral from 0 to 2 of 1/(sqrt(16-x^2))
\int\:_{0}^{2}\frac{1}{\sqrt{16-x^{2}}}dx
d/(dθ)(3sin(2θ))
\frac{d}{dθ}(3\sin(2θ))
sum from n=1 to infinity of cos(4n)
\sum\:_{n=1}^{\infty\:}\cos(4n)
derivative of ae^{ax}
\frac{d}{dx}(ae^{ax})
derivative of (x^3+2x-7(3+x-x^2))
\frac{d}{dx}((x^{3}+2x-7)(3+x-x^{2}))
derivative of (x+1/x ^{-1})
\frac{d}{dx}((x+\frac{1}{x})^{-1})
(dy)/(dx)-2xy=8x
\frac{dy}{dx}-2xy=8x
limit as x approaches 1-of |x-1|
\lim\:_{x\to\:1-}(\left|x-1\right|)
integral of (4x^3)/(e^{2x^2)}
\int\:\frac{4x^{3}}{e^{2x^{2}}}dx
derivative of 1/((x-2^2))
\frac{d}{dx}(\frac{1}{(x-2)^{2}})
tangent of f(x)=x^2+2x+1,\at x=-3
tangent\:f(x)=x^{2}+2x+1,\at\:x=-3
slope of (8-4)(89)
slope\:(8-4)(89)
derivative of x^2-sin(x)
\frac{d}{dx}(x^{2}-\sin(x))
tangent of x^2+y^2=169,(5,-12)
tangent\:x^{2}+y^{2}=169,(5,-12)
1
..
659
660
661
662
663
..
2459