Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(Ce^{2x}-3)
\frac{\partial\:}{\partial\:x}(Ce^{2x}-3)
sum from n=0 to infinity of (x-2x^2)^n
\sum\:_{n=0}^{\infty\:}(x-2x^{2})^{n}
limit as x approaches 0+of x^{12}*ln(x)
\lim\:_{x\to\:0+}(x^{12}\cdot\:\ln(x))
y^{''}+4sqrt(3)y^'+12y=0
y^{\prime\:\prime\:}+4\sqrt{3}y^{\prime\:}+12y=0
integral of 1/7 e^{7x}
\int\:\frac{1}{7}e^{7x}dx
inverse oflaplace (e^{-2s})/(s^2-3s-4)
inverselaplace\:\frac{e^{-2s}}{s^{2}-3s-4}
derivative of ln(11)
\frac{d}{dx}(\ln(11))
limit as x approaches 0 of 1-1/x
\lim\:_{x\to\:0}(1-\frac{1}{x})
tangent of (x-6/x),\at m=0
tangent\:(x-\frac{6}{x}),\at\:m=0
derivative of x^8e^{7x}
derivative\:x^{8}e^{7x}
tangent of f(x)=(x-1)/(x-4),\at x=5
tangent\:f(x)=\frac{x-1}{x-4},\at\:x=5
integral of sqrt(cos^2(x)+cos(x))
\int\:\sqrt{\cos^{2}(x)+\cos(x)}dx
derivative of e^{(2x/3})
\frac{d}{dx}(e^{\frac{2x}{3}})
limit as x approaches 0-of 2x^2sin(1/x)
\lim\:_{x\to\:0-}(2x^{2}\sin(\frac{1}{x}))
(\partial)/(\partial x)(sqrt(8+x^2-2y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{8+x^{2}-2y^{2}})
integral of (t^2cos(2t^3))/(csc(10t^3))
\int\:\frac{t^{2}\cos(2t^{3})}{\csc(10t^{3})}dt
limit as x approaches infinity of x^2-1
\lim\:_{x\to\:\infty\:}(x^{2}-1)
integral of x(sqrt(x)+1)
\int\:x(\sqrt{x}+1)dx
(\partial)/(\partial y)(ln(x))
\frac{\partial\:}{\partial\:y}(\ln(x))
sum from n=1 to infinity of 4^n
\sum\:_{n=1}^{\infty\:}4^{n}
tangent of y=4x^2,(2,16)
tangent\:y=4x^{2},(2,16)
integral from 1 to 10 of 1/(x-6)
\int\:_{1}^{10}\frac{1}{x-6}dx
tangent of f(x)=5x^2,\at x=-3,-45
tangent\:f(x)=5x^{2},\at\:x=-3,-45
tangent of f(x)=x^3-4x
tangent\:f(x)=x^{3}-4x
derivative of (sin(x^2)/(3x))
\frac{d}{dx}(\frac{\sin(x^{2})}{3x})
integral of sqrt(x)e^{sqrt(x)}
\int\:\sqrt{x}e^{\sqrt{x}}dx
2xy^'+y=6x,y(4)=26
2xy^{\prime\:}+y=6x,y(4)=26
tangent of f(x)= 1/(sqrt(x))
tangent\:f(x)=\frac{1}{\sqrt{x}}
integral of (x+2)ln(x+2)2
\int\:(x+2)\ln(x+2)2dx
integral from 0 to 4 of 5x-x^2
\int\:_{0}^{4}5x-x^{2}dx
integral of e^uu
\int\:e^{u}udu
integral of 1/(sqrt(29-x^2))
\int\:\frac{1}{\sqrt{29-x^{2}}}dx
derivative of ln(x+sqrt(9+x^2))
\frac{d}{dx}(\ln(x+\sqrt{9+x^{2}}))
area 2x+1,x^2-4x
area\:2x+1,x^{2}-4x
(d^2)/(dx^2)((e^x)/(5+e^x))
\frac{d^{2}}{dx^{2}}(\frac{e^{x}}{5+e^{x}})
f(x)=(x^3-2x^2+3x+1)^{11}
f(x)=(x^{3}-2x^{2}+3x+1)^{11}
derivative of x-sqrt(1-x^2)
\frac{d}{dx}(x-\sqrt{1-x^{2}})
y^{''}+4y^'+8y=0
y^{\prime\:\prime\:}+4y^{\prime\:}+8y=0
integral of 5/(x(x^4+6))
\int\:\frac{5}{x(x^{4}+6)}dx
limit as x approaches 2 of (2-x)/x
\lim\:_{x\to\:2}(\frac{2-x}{x})
integral from-2 to 2 of 3/((x+3)^4)
\int\:_{-2}^{2}\frac{3}{(x+3)^{4}}dx
integral of (6x^2y+2x)
\int\:(6x^{2}y+2x)dy
integral of y(x^2+y^2)
\int\:y(x^{2}+y^{2})dy
integral of (sec^2(x))/(tan^7(x))
\int\:\frac{\sec^{2}(x)}{\tan^{7}(x)}dx
integral of csc(x)sec(x)
\int\:\csc(x)\sec(x)dx
f(x)=6sqrt(x)
f(x)=6\sqrt{x}
derivative of f(x)=3e^{(2x^2)}
derivative\:f(x)=3e^{(2x^{2})}
(y-9)^2=y^'
(y-9)^{2}=y^{\prime\:}
derivative of t/(sqrt(t^2+1))
derivative\:\frac{t}{\sqrt{t^{2}+1}}
integral of 5e^{7x}
\int\:5e^{7x}dx
integral of (y+4)/2-(y^2)/2
\int\:\frac{y+4}{2}-\frac{y^{2}}{2}dy
integral of (4ln(x))/x
\int\:\frac{4\ln(x)}{x}dx
derivative of x^pi
derivative\:x^{π}
derivative of cos(x^2)
derivative\:\cos(x^{2})
limit as x approaches 0+of (17tan(x))^x
\lim\:_{x\to\:0+}((17\tan(x))^{x})
derivative of e^{9tsin(2t)}
derivative\:e^{9t\sin(2t)}
integral of (x-5)/(x^2-x-2)
\int\:\frac{x-5}{x^{2}-x-2}dx
(\partial)/(\partial x)(x^6y^5-x^5y^4)
\frac{\partial\:}{\partial\:x}(x^{6}y^{5}-x^{5}y^{4})
d/(d{x)}(e^{{x}{y}{z}}sin({x}{y})cos(2{x}{z}))
\frac{d}{d{x}}(e^{{x}{y}{z}}\sin({x}{y})\cos(2{x}{z}))
integral from 0 to 1 of (3+xsqrt(x))
\int\:_{0}^{1}(3+x\sqrt{x})dx
integral of ln(x^5)
\int\:\ln(x^{5})dx
derivative of ln(8x^2)
\frac{d}{dx}(\ln(8x^{2}))
derivative of x^2+4x-2
derivative\:x^{2}+4x-2
laplacetransform f(t)=e^{2t}cos(3t)
laplacetransform\:f(t)=e^{2t}\cos(3t)
sum from n=1 to infinity}2^{-n of+3^{-n}
\sum\:_{n=1}^{\infty\:}2^{-n}+3^{-n}
tangent of-9x^{1/3}+5,\at x=4
tangent\:-9x^{\frac{1}{3}}+5,\at\:x=4
(\partial)/(\partial z)(ln(x+z)-yz)
\frac{\partial\:}{\partial\:z}(\ln(x+z)-yz)
64y^{''}+80y^'+25y=0
64y^{\prime\:\prime\:}+80y^{\prime\:}+25y=0
y^{''}+4y=x
y^{\prime\:\prime\:}+4y=x
integral of (4x^3+2)/(x^2)
\int\:\frac{4x^{3}+2}{x^{2}}dx
(d^2)/(dx^2)(sin(5x))
\frac{d^{2}}{dx^{2}}(\sin(5x))
derivative of y=cot(1-2x^2)
derivative\:y=\cot(1-2x^{2})
xy^'+3y=(2e^{2x})/(x^2)
xy^{\prime\:}+3y=\frac{2e^{2x}}{x^{2}}
derivative of cos(x+x^{5/4})
\frac{d}{dx}(\cos(x)+x^{\frac{5}{4}})
y^{''}-4y^'-5y=5x
y^{\prime\:\prime\:}-4y^{\prime\:}-5y=5x
integral of 1/(s^2(s-1)^2)
\int\:\frac{1}{s^{2}(s-1)^{2}}ds
integral of 6x^2+1
\int\:6x^{2}+1dx
limit as x approaches 0+of-1/(x^2)
\lim\:_{x\to\:0+}(-\frac{1}{x^{2}})
y^{''}-5y^'+9y=xe^x
y^{\prime\:\prime\:}-5y^{\prime\:}+9y=xe^{x}
derivative of (x^2-2x-1^{2/3})
\frac{d}{dx}((x^{2}-2x-1)^{\frac{2}{3}})
integral of tan^5(x)
\int\:\tan^{5}(x)dx
(x+y)e^{x/y}dx+(x-(x^2)/y)e^{x/y}dy=0
(x+y)e^{\frac{x}{y}}dx+(x-\frac{x^{2}}{y})e^{\frac{x}{y}}dy=0
integral of (5x^{14}-2x^5)
\int\:(5x^{14}-2x^{5})dx
integral of (y^2-1)^2
\int\:(y^{2}-1)^{2}dy
derivative of x^2+a^2
\frac{d}{dx}(x^{2}+a^{2})
integral of e^{3x-4}
\int\:e^{3x-4}dx
(\partial)/(\partial x)(e^{xe^y})
\frac{\partial\:}{\partial\:x}(e^{xe^{y}})
f^'(x)=7e^{-e}-5e^{-7x}
f^{\prime\:}(x)=7e^{-e}-5e^{-7x}
limit as x approaches 0+of 3/(1+e^{1/x)}
\lim\:_{x\to\:0+}(\frac{3}{1+e^{\frac{1}{x}}})
integral of 4/(1+9x^2)
\int\:\frac{4}{1+9x^{2}}dx
integral of-x^5
\int\:-x^{5}dx
integral of (2u)/(4u^2+3)
\int\:\frac{2u}{4u^{2}+3}du
derivative of e^{sin(x+y})
\frac{d}{dx}(e^{\sin(x+y)})
derivative of \sqrt[5]{x}-8/x
\frac{d}{dx}(\sqrt[5]{x}-\frac{8}{x})
limit as x approaches-3 of sqrt(4-x^2)
\lim\:_{x\to\:-3}(\sqrt{4-x^{2}})
integral of ((x-2)^2)/(sqrt(4x-x^2))
\int\:\frac{(x-2)^{2}}{\sqrt{4x-x^{2}}}dx
(\partial)/(\partial x)(2xy^3+2xy-4)
\frac{\partial\:}{\partial\:x}(2xy^{3}+2xy-4)
derivative of f(x)=(x+2x^2)/(1+x^2)
derivative\:f(x)=\frac{x+2x^{2}}{1+x^{2}}
(\partial)/(\partial x)(sin(6x-7y))
\frac{\partial\:}{\partial\:x}(\sin(6x-7y))
integral of (cos^3(2x))/(sqrt(sin(2x)))
\int\:\frac{\cos^{3}(2x)}{\sqrt{\sin(2x)}}dx
1
..
921
922
923
924
925
..
2459