Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (sec(x)tan(x))/(sec(x)-8)
\int\:\frac{\sec(x)\tan(x)}{\sec(x)-8}dx
derivative of cos(3x+sin(3x))
\frac{d}{dx}(\cos(3x)+\sin(3x))
y^{''}-3y^'+2y=2e^{3t}
y^{\prime\:\prime\:}-3y^{\prime\:}+2y=2e^{3t}
derivative of 0.75-2xsin(0.1x)
\frac{d}{dx}(0.75-2x\sin(0.1x))
y^{''}+25y=10sin(5x)
y^{\prime\:\prime\:}+25y=10\sin(5x)
limit as x approaches 0 of ln(3-x)
\lim\:_{x\to\:0}(\ln(3-x))
inverse oflaplace s/(s^2+8)
inverselaplace\:\frac{s}{s^{2}+8}
taylor e^x,5
taylor\:e^{x},5
tangent of f(x)= 5/x ,\at x=-1/5
tangent\:f(x)=\frac{5}{x},\at\:x=-\frac{1}{5}
integral from pi/6 to infinity of 2/x
\int\:_{\frac{π}{6}}^{\infty\:}\frac{2}{x}dx
integral from 5 to 9 of 1/(16+(x-5)^2)
\int\:_{5}^{9}\frac{1}{16+(x-5)^{2}}dx
integral from 1 to 4 of (x/2)+1
\int\:_{1}^{4}(\frac{x}{2})+1dx
derivative of (8x-1^3(2x+1)^4)
\frac{d}{dx}((8x-1)^{3}(2x+1)^{4})
integral of x*cos(ax)
\int\:x\cdot\:\cos(ax)dx
tangent of (4x+3)/(x-1)(2.11)
tangent\:\frac{4x+3}{x-1}(2.11)
tangent of y=3x^2-3x+4
tangent\:y=3x^{2}-3x+4
(dy)/(dx)=15+5y+3x+yx
\frac{dy}{dx}=15+5y+3x+yx
f^'(x)=x^2
f^{\prime\:}(x)=x^{2}
limit as a approaches 0 of 1/a
\lim\:_{a\to\:0}(\frac{1}{a})
(\partial)/(\partial x)(x/(1-ln(x-1)))
\frac{\partial\:}{\partial\:x}(\frac{x}{1-\ln(x-1)})
area y= 1/(20x^2),y=x,y= x/6
area\:y=\frac{1}{20x^{2}},y=x,y=\frac{x}{6}
derivative of a(e^{2x}+2e^{2x}x)
\frac{d}{dx}(a(e^{2x}+2e^{2x}x))
derivative of f(x)=3x^2+2ln(8)(x)
derivative\:f(x)=3x^{2}+2\ln(8)(x)
y^'=((x^5))/y
y^{\prime\:}=\frac{(x^{5})}{y}
integral from 0 to 3pi of 3x^2sin(1/6 x)
\int\:_{0}^{3π}3x^{2}\sin(\frac{1}{6}x)dx
limit as x approaches 1 of sqrt(5x+1)
\lim\:_{x\to\:1}(\sqrt{5x+1})
limit as x approaches 0 of (x)^{-1+x}
\lim\:_{x\to\:0}((x)^{-1+x})
y^{''}-4y^'+9y=0
y^{\prime\:\prime\:}-4y^{\prime\:}+9y=0
integral from 0 to 2 of x^2sqrt(x^3+1)
\int\:_{0}^{2}x^{2}\sqrt{x^{3}+1}dx
tangent of f(x)= 7/(4-x),\at x=-1
tangent\:f(x)=\frac{7}{4-x},\at\:x=-1
(\partial)/(\partial x)(y^4sin(2x))
\frac{\partial\:}{\partial\:x}(y^{4}\sin(2x))
limit as x approaches-4 of (x^2-9)/(4-x)
\lim\:_{x\to\:-4}(\frac{x^{2}-9}{4-x})
derivative of f(x)=6e^{-1/6 x^2}
derivative\:f(x)=6e^{-\frac{1}{6}x^{2}}
integral of 24y(1-x-y)
\int\:24y(1-x-y)dy
(\partial)/(\partial x)(ye^{x/y})
\frac{\partial\:}{\partial\:x}(ye^{\frac{x}{y}})
derivative of ((3x+1)/(x^{2/3)})
\frac{d}{dx}(\frac{(3x+1)}{x^{\frac{2}{3}}})
inverse oflaplace e^{-2s}(1/(s+1))
inverselaplace\:e^{-2s}(\frac{1}{s+1})
integral of te^{-2t}
\int\:te^{-2t}dt
(\partial)/(\partial x)(50x-0.5x^2+75y-y^2)
\frac{\partial\:}{\partial\:x}(50x-0.5x^{2}+75y-y^{2})
(\partial)/(\partial x)(-ln(x^2+1))
\frac{\partial\:}{\partial\:x}(-\ln(x^{2}+1))
sum from n=1 to infinity of (x+6)^n
\sum\:_{n=1}^{\infty\:}(x+6)^{n}
integral of e^{-x^3}
\int\:e^{-x^{3}}dx
integral of x(x^2+4)^{3/2}
\int\:x(x^{2}+4)^{\frac{3}{2}}dx
(\partial)/(\partial x)(sqrt(4))
\frac{\partial\:}{\partial\:x}(\sqrt{4})
integral of-e^{2x}
\int\:-e^{2x}dx
limit as h approaches 0 of (6^h-1)/h
\lim\:_{h\to\:0}(\frac{6^{h}-1}{h})
inverse oflaplace (s^2)/(s^2+20s+100)
inverselaplace\:\frac{s^{2}}{s^{2}+20s+100}
integral of e^{2θ}sin(3θ)
\int\:e^{2θ}\sin(3θ)dθ
limit as x approaches-1 of x^2-2
\lim\:_{x\to\:-1}(x^{2}-2)
integral of 1/(1000-x)
\int\:\frac{1}{1000-x}dx
integral of-4sin(2x)
\int\:-4\sin(2x)dx
derivative of (3+8x/(5-4x))
\frac{d}{dx}(\frac{3+8x}{5-4x})
derivative of x^3-2x^2+2
\frac{d}{dx}(x^{3}-2x^{2}+2)
(\partial)/(\partial y)(xcos(y)sin(z))
\frac{\partial\:}{\partial\:y}(x\cos(y)\sin(z))
2y^'+10y=80,y(0)=0
2y^{\prime\:}+10y=80,y(0)=0
(\partial)/(\partial x)(sqrt(8-2x^2-y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{8-2x^{2}-y^{2}})
derivative of g(0)=(4-2x)e^n-4
derivative\:g(0)=(4-2x)e^{n}-4
limit as x approaches-1 of 5-x^2
\lim\:_{x\to\:-1}(5-x^{2})
derivative of (pix)/4
derivative\:\frac{πx}{4}
y^'=4x(x-2)
y^{\prime\:}=4x(x-2)
maclaurin (1+x)^{3/2}
maclaurin\:(1+x)^{\frac{3}{2}}
derivative of 10^{1-x^2}
\frac{d}{dx}(10^{1-x^{2}})
(\partial)/(\partial x)(arctan(x+4y))
\frac{\partial\:}{\partial\:x}(\arctan(x+4y))
integral of x^{-1}\sqrt[3]{1+ln(x)}
\int\:x^{-1}\sqrt[3]{1+\ln(x)}dx
limit as x approaches-2 of (x^2+8)/(x-2)
\lim\:_{x\to\:-2}(\frac{x^{2}+8}{x-2})
y^{''}=-3y-4y^'
y^{\prime\:\prime\:}=-3y-4y^{\prime\:}
(dy)/(dx)=e^{-2x+3y}
\frac{dy}{dx}=e^{-2x+3y}
derivative of tan(pi/2 x)
\frac{d}{dx}(\tan(\frac{π}{2}x))
integral of sec^3(x)tan^3(x)
\int\:\sec^{3}(x)\tan^{3}(x)dx
y^'+(1-1/x)y=x^2
y^{\prime\:}+(1-\frac{1}{x})y=x^{2}
derivative of 3/(x-2)
derivative\:\frac{3}{x-2}
integral of (x^2)/((sqrt(x^2+9))^3)
\int\:\frac{x^{2}}{(\sqrt{x^{2}+9})^{3}}dx
limit as x approaches 4 of sqrt(x)
\lim\:_{x\to\:4}(\sqrt{x})
x((dy)/(dx))+4y=x^3-x
x(\frac{dy}{dx})+4y=x^{3}-x
tangent of f(x)=2x^2-7x+5,\at x=1
tangent\:f(x)=2x^{2}-7x+5,\at\:x=1
area y=5x^3-2x^4,x=0,x=2
area\:y=5x^{3}-2x^{4},x=0,x=2
derivative of 6x^2*cos(2x)
\frac{d}{dx}(6x^{2}\cdot\:\cos(2x))
d/(dt)(e^{tsin(2t)})
\frac{d}{dt}(e^{t\sin(2t)})
derivative of 9e^{-x}
\frac{d}{dx}(9e^{-x})
d/(dθ)(5+5sin(θ))
\frac{d}{dθ}(5+5\sin(θ))
(-1)^'
(-1)^{\prime\:}
(\partial)/(\partial x)((x-y)/(x+z))
\frac{\partial\:}{\partial\:x}(\frac{x-y}{x+z})
y^'=(-1)/x y+2
y^{\prime\:}=\frac{-1}{x}y+2
d/(dt)(5sin(t))
\frac{d}{dt}(5\sin(t))
laplacetransform 2(sin(2t))e^{-2t}
laplacetransform\:2(\sin(2t))e^{-2t}
derivative of xln(x/4)
\frac{d}{dx}(x\ln(\frac{x}{4}))
inverse oflaplace 2/(s^2)
inverselaplace\:\frac{2}{s^{2}}
limit as x approaches 5 of 10
\lim\:_{x\to\:5}(10)
integral of sin^7(xco)s^4x
\int\:\sin^{7}(xco)s^{4}xdx
(\partial)/(\partial x)(6y^9x^5-5y^8x^4)
\frac{\partial\:}{\partial\:x}(6y^{9}x^{5}-5y^{8}x^{4})
limit as x approaches infinity of-xR(x)C(x)
\lim\:_{x\to\:\infty\:}(-xR(x)C(x))
y^'=((e^{(x-y)}))/(1+e^x),y(1)=0
y^{\prime\:}=\frac{(e^{(x-y)})}{1+e^{x}},y(1)=0
d/(dt)(5e^t)
\frac{d}{dt}(5e^{t})
tangent of f(x)=x^4-5x^2+4,\at x=1
tangent\:f(x)=x^{4}-5x^{2}+4,\at\:x=1
derivative of f(x)=x^3(x-9)^2
derivative\:f(x)=x^{3}(x-9)^{2}
derivative of 6x^5-15x^4+30x^2-30x+9
\frac{d}{dx}(6x^{5}-15x^{4}+30x^{2}-30x+9)
limit as x approaches-2 of x^5
\lim\:_{x\to\:-2}(x^{5})
sum from n=2 to infinity of 1/(n(ln(n)))
\sum\:_{n=2}^{\infty\:}\frac{1}{n(\ln(n))}
derivative of 2x^3+3x^2-36x
\frac{d}{dx}(2x^{3}+3x^{2}-36x)
inverse oflaplace s/(s^2)
inverselaplace\:\frac{s}{s^{2}}
1
..
919
920
921
922
923
..
2459