Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of pi/4
derivative\:\frac{π}{4}
integral of sin^3(4x)cos^2(4x)
\int\:\sin^{3}(4x)\cos^{2}(4x)dx
(\partial)/(\partial x)(sqrt(4-x^2))
\frac{\partial\:}{\partial\:x}(\sqrt{4-x^{2}})
(\partial)/(\partial y)(xy+2/x+4/y)
\frac{\partial\:}{\partial\:y}(xy+\frac{2}{x}+\frac{4}{y})
slope of (-34,74),(-33,44)
slope\:(-34,74),(-33,44)
(\partial)/(\partial u)(5u^2v^3+2u^2+7v)
\frac{\partial\:}{\partial\:u}(5u^{2}v^{3}+2u^{2}+7v)
(dy)/(dx)= y/(2(x+y))
\frac{dy}{dx}=\frac{y}{2(x+y)}
derivative of ln(cos^2(x)+sin^2(x))
derivative\:\ln(\cos^{2}(x)+\sin^{2}(x))
integral of (x^2)^{1/2}
\int\:(x^{2})^{\frac{1}{2}}dx
(\partial)/(\partial y)(sqrt((2x-3y)^3))
\frac{\partial\:}{\partial\:y}(\sqrt{(2x-3y)^{3}})
area sqrt(x+8),x=0,y=0
area\:\sqrt{x+8},x=0,y=0
derivative of y=(x+x^2)/(e^x+1)
derivative\:y=\frac{x+x^{2}}{e^{x}+1}
derivative of (54/(x^4))
\frac{d}{dx}(\frac{54}{x^{4}})
integral of 2x+4x^2-5/2
\int\:2x+4x^{2}-\frac{5}{2}dx
integral of (x^2)/(2(2-x))
\int\:\frac{x^{2}}{2(2-x)}dx
limit as x approaches 0 of (-1)/(14x)
\lim\:_{x\to\:0}(\frac{-1}{14x})
derivative of y=6x^2sin(x)tan(x)
derivative\:y=6x^{2}\sin(x)\tan(x)
limit as x approaches 2 of (2x+4)/(x-2)
\lim\:_{x\to\:2}(\frac{2x+4}{x-2})
integral of 4x^2sin(x)
\int\:4x^{2}\sin(x)dx
tangent of y=sqrt(2x),(8,4)
tangent\:y=\sqrt{2x},(8,4)
(\partial)/(\partial y)((x+2)y)
\frac{\partial\:}{\partial\:y}((x+2)y)
(\partial)/(\partial x)(ln(x/2))
\frac{\partial\:}{\partial\:x}(\ln(\frac{x}{2}))
derivative of \sqrt[7]{ln(x})
\frac{d}{dx}(\sqrt[7]{\ln(x)})
(dy)/(dx)=2^{4x-y}
\frac{dy}{dx}=2^{4x-y}
integral of 3x(x^2+3)
\int\:3x(x^{2}+3)dx
f(x)=x*ln(2x+1)
f(x)=x\cdot\:\ln(2x+1)
slope of 4sin(5X)
slope\:4\sin(5X)
integral of e^{2t}cos(t)
\int\:e^{2t}\cos(t)dt
derivative of 1/4 x^2
\frac{d}{dx}(\frac{1}{4}x^{2})
limit as h approaches 0 of sin(h)
\lim\:_{h\to\:0}(\sin(h))
d/(dy)(2xy^2)
\frac{d}{dy}(2xy^{2})
taylor (e^x-1)sin(-2x)
taylor\:(e^{x}-1)\sin(-2x)
integral of e^{7x}-1/(sqrt(x))
\int\:e^{7x}-\frac{1}{\sqrt{x}}dx
(dy)/(dx)=(5y+y^2)
\frac{dy}{dx}=(5y+y^{2})
integral of 1/(p(1-0.05p))
\int\:\frac{1}{p(1-0.05p)}dp
integral of 12sec^2(6x)tan(6x)
\int\:12\sec^{2}(6x)\tan(6x)dx
integral of 1/((x+1)(x+5))
\int\:\frac{1}{(x+1)(x+5)}dx
integral of tan^3(9x)sec(9x)
\int\:\tan^{3}(9x)\sec(9x)dx
derivative of y=cos(a^9+x^9)
derivative\:y=\cos(a^{9}+x^{9})
tangent of y=6x^2-3x,\at 1,5
tangent\:y=6x^{2}-3x,\at\:1,5
slope ofintercept (8.1)(4.1)
slopeintercept\:(8.1)(4.1)
(\partial)/(\partial y)(x^4+2x^2y)
\frac{\partial\:}{\partial\:y}(x^{4}+2x^{2}y)
derivative of (x^2+1^{1/2})
\frac{d}{dx}((x^{2}+1)^{\frac{1}{2}})
sum from n=0 to infinity of n*sin(n*pi)
\sum\:_{n=0}^{\infty\:}n\cdot\:\sin(n\cdot\:π)
integral of (x^2-5x+6)/(x-2)
\int\:\frac{x^{2}-5x+6}{x-2}dx
integral of ((x+5))/(\sqrt[3]{x+9)}
\int\:\frac{(x+5)}{\sqrt[3]{x+9}}dx
tangent of f(x)=sqrt(9-x),\at x=0
tangent\:f(x)=\sqrt{9-x},\at\:x=0
limit as x approaches-1 of 3x^2+2x-1
\lim\:_{x\to\:-1}(3x^{2}+2x-1)
inverse oflaplace 6/(s^2(7s+1))
inverselaplace\:\frac{6}{s^{2}(7s+1)}
integral of 10x(4x^2-1)^9
\int\:10x(4x^{2}-1)^{9}dx
taylor ln(-2x-5),-5
taylor\:\ln(-2x-5),-5
derivative of (e^x/(sqrt(x)))
\frac{d}{dx}(\frac{e^{x}}{\sqrt{x}})
integral of (8x+e^x)sqrt(4x^2+e^x)
\int\:(8x+e^{x})\sqrt{4x^{2}+e^{x}}dx
(d^2)/(dx^2)(3x^2cos(8x))
\frac{d^{2}}{dx^{2}}(3x^{2}\cos(8x))
limit as x approaches 1 of (ln(x))^{x-1}
\lim\:_{x\to\:1}((\ln(x))^{x-1})
(dy)/(dx)=9x^2-12x
\frac{dy}{dx}=9x^{2}-12x
inverse oflaplace 1/((s-1)(s-2)(s-3))
inverselaplace\:\frac{1}{(s-1)(s-2)(s-3)}
derivative of e^{4x^3-18x^2}
derivative\:e^{4x^{3}-18x^{2}}
(\partial)/(\partial y)(3x^2y+2xy^2)
\frac{\partial\:}{\partial\:y}(3x^{2}y+2xy^{2})
integral of (2x+1)^2
\int\:(2x+1)^{2}dx
derivative of e^{-x}cos(y+e^{-y}cos(x))
\frac{d}{dx}(e^{-x}\cos(y)+e^{-y}\cos(x))
integral of-16sin(4x)
\int\:-16\sin(4x)dx
integral of (x^2-3)^5(2x)
\int\:(x^{2}-3)^{5}(2x)dx
integral of (cot(x))/(cos(x))
\int\:\frac{\cot(x)}{\cos(x)}dx
(1+x)y^'=y+x
(1+x)y^{\prime\:}=y+x
derivative of y=3arctan(x+sqrt(1+x^2))
derivative\:y=3\arctan(x+\sqrt{1+x^{2}})
integral of (e^{2x}sin(3x))
\int\:(e^{2x}\sin(3x))dx
derivative of x(x-1)^2
derivative\:x(x-1)^{2}
integral of 3xsin(2x)
\int\:3x\sin(2x)dx
derivative of (2xcos(x^2)/(1+sin(x^2)))
\frac{d}{dx}(\frac{2x\cos(x^{2})}{1+\sin(x^{2})})
f^'(x)=x^3
f^{\prime\:}(x)=x^{3}
maclaurin 1/(x+5)
maclaurin\:\frac{1}{x+5}
derivative of x+iy(x)
\frac{d}{dx}(x+iy(x))
(x+y)^2dx+(2xy+x^2-5)dy=0,y(1)=1
(x+y)^{2}dx+(2xy+x^{2}-5)dy=0,y(1)=1
integral from 0 to 8 of 1/(x^2+16)
\int\:_{0}^{8}\frac{1}{x^{2}+16}dx
f(X)=(ln(2))/(ln(X))
f(X)=\frac{\ln(2)}{\ln(X)}
-derivative of (dy/(dx))+400y=0
-\frac{d}{dx}(\frac{dy}{dx})+400y=0
integral of sin^9(x)cos(x)
\int\:\sin^{9}(x)\cos(x)dx
integral of (sin(pix))/pi
\int\:\frac{\sin(πx)}{π}dx
(\partial)/(\partial {g)}(2pisqrt(l/({g))})
\frac{\partial\:}{\partial\:{g}}(2π\sqrt{\frac{l}{{g}}})
laplacetransform (t-1)^2
laplacetransform\:(t-1)^{2}
integral of e^{4ln(x)}
\int\:e^{4\ln(x)}dx
derivative of (x^3/2)
\frac{d}{dx}(\frac{x^{3}}{2})
limit as x approaches 2+of 4x^2-2x+3
\lim\:_{x\to\:2+}(4x^{2}-2x+3)
tangent of f(x)=7sqrt(x),\at x=25
tangent\:f(x)=7\sqrt{x},\at\:x=25
derivative of ln(x^{3/2})
derivative\:\ln(x^{\frac{3}{2}})
inverse oflaplace (10)/(s(s+2))
inverselaplace\:\frac{10}{s(s+2)}
tangent of f(x)=4x^2+5x+1,(0,1)
tangent\:f(x)=4x^{2}+5x+1,(0,1)
derivative of y=(4-3x)/(3x^2+x)
derivative\:y=\frac{4-3x}{3x^{2}+x}
slope of 630-4.9t^2
slope\:630-4.9t^{2}
limit as x approaches pi/2 of 8sec(x)
\lim\:_{x\to\:\frac{π}{2}}(8\sec(x))
y^'=y(xy^4+3)
y^{\prime\:}=y(xy^{4}+3)
y^'-(2y)/x =1
y^{\prime\:}-\frac{2y}{x}=1
9^'
9^{\prime\:}
limit as x approaches-infinity of ((1-1)^{e-x}+(2-2)x^4+1)/(x^2)
\lim\:_{x\to\:-\infty\:}(\frac{(1-1)^{e-x}+(2-2)x^{4}+1}{x^{2}})
limit as x approaches 0 of (x2^x)/(2x-1)
\lim\:_{x\to\:0}(\frac{x2^{x}}{2x-1})
limit as x approaches infinity+of (5-2x)/(3x-7)
\lim\:_{x\to\:\infty\:+}(\frac{5-2x}{3x-7})
integral of 1/2 x^{4/3}
\int\:\frac{1}{2}x^{\frac{4}{3}}dx
sum from n=0 to infinity of \sqrt[n]{n}
\sum\:_{n=0}^{\infty\:}\sqrt[n]{n}
tangent of y=(x^2)/(x+9),(1, 1/10)
tangent\:y=\frac{x^{2}}{x+9},(1,\frac{1}{10})
1
..
922
923
924
925
926
..
2459