Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme x^3+8y^3-6xy+5
extreme\:x^{3}+8y^{3}-6xy+5
extreme f(x)=4x^3-60x^2+200x
extreme\:f(x)=4x^{3}-60x^{2}+200x
extreme f(x)=x^3+2y^2+3xy+8
extreme\:f(x)=x^{3}+2y^{2}+3xy+8
extreme f(x,y)=x^2+xy+y^2-6x-9y
extreme\:f(x,y)=x^{2}+xy+y^{2}-6x-9y
extreme (x+3)/(x+2)
extreme\:\frac{x+3}{x+2}
extreme f(x)=x(sqrt((39900-x)/5))
extreme\:f(x)=x(\sqrt{\frac{39900-x}{5}})
extreme f(x)=x^3-x^2-x+5,-1<= x<= 2
extreme\:f(x)=x^{3}-x^{2}-x+5,-1\le\:x\le\:2
extreme f(x)=24x-24x^2+6x^3
extreme\:f(x)=24x-24x^{2}+6x^{3}
extreme f(x)=-2x^2-4x+3
extreme\:f(x)=-2x^{2}-4x+3
extreme f(x)=x^2log_{9}(x)
extreme\:f(x)=x^{2}\log_{9}(x)
extreme f(x)=2000+530(ln(x))
extreme\:f(x)=2000+530(\ln(x))
extreme f(x)=(3x+4)/(6x+1)
extreme\:f(x)=\frac{3x+4}{6x+1}
extreme f(x)=3x^4-96x^2+1
extreme\:f(x)=3x^{4}-96x^{2}+1
extreme f(x)=0.003x^2+4.2x-50
extreme\:f(x)=0.003x^{2}+4.2x-50
extreme f(x)=-3x^2+1
extreme\:f(x)=-3x^{2}+1
extreme f(x)=-3x^2+3
extreme\:f(x)=-3x^{2}+3
extreme f(x)=2x^3+x^2-20x
extreme\:f(x)=2x^{3}+x^{2}-20x
extreme f(x)=2x^2-4x[0.3]
extreme\:f(x)=2x^{2}-4x[0.3]
extreme f(xy)=4x+8y
extreme\:f(xy)=4x+8y
extreme 5sin(3x)-5
extreme\:5\sin(3x)-5
extreme f(x,y)=3x^2y+4xy-2
extreme\:f(x,y)=3x^{2}y+4xy-2
extreme 1/2 (5x-3)
extreme\:\frac{1}{2}(5x-3)
extreme f(x)=(3x^2+6)^2
extreme\:f(x)=(3x^{2}+6)^{2}
extreme f(x,y)=x^2+4xy+5y^2-7x+9y-10
extreme\:f(x,y)=x^{2}+4xy+5y^{2}-7x+9y-10
extreme f(x)=9x-18cos(x),-2<= x<= 0
extreme\:f(x)=9x-18\cos(x),-2\le\:x\le\:0
extreme f(x)=2x^2-4x,0<= x<= 3
extreme\:f(x)=2x^{2}-4x,0\le\:x\le\:3
extreme x^2-18x+79
extreme\:x^{2}-18x+79
extreme f(x)=3x^4-294x^2+3,-8<= x<= 8
extreme\:f(x)=3x^{4}-294x^{2}+3,-8\le\:x\le\:8
extreme f(x)=2x^2-7,-7<= x<= 7
extreme\:f(x)=2x^{2}-7,-7\le\:x\le\:7
extreme x^2-18x+86
extreme\:x^{2}-18x+86
extreme 2x^2-4x+6
extreme\:2x^{2}-4x+6
extreme f(x)=3(x-e^x)
extreme\:f(x)=3(x-e^{x})
extreme f(x)=x^3+2x^2-4x+7
extreme\:f(x)=x^{3}+2x^{2}-4x+7
extreme f(x,y)=-4xy+2x^2-10y^2-4y^3-1
extreme\:f(x,y)=-4xy+2x^{2}-10y^{2}-4y^{3}-1
extreme 4sin(2x),-2pi<= x<= pi
extreme\:4\sin(2x),-2π\le\:x\le\:π
extreme 0.3x^2-66x+15239
extreme\:0.3x^{2}-66x+15239
extreme a(-6-0)^2
extreme\:a(-6-0)^{2}
extreme f(x,y)=2xy-(x^2y)/3-(2xy^2)/3
extreme\:f(x,y)=2xy-\frac{x^{2}y}{3}-\frac{2xy^{2}}{3}
extreme f(x)=4sec(x)
extreme\:f(x)=4\sec(x)
extreme f(x,y)=yx^2-3xye^{-xy}
extreme\:f(x,y)=yx^{2}-3xye^{-xy}
extreme f(x,y)=x^3-9xy-4y^2
extreme\:f(x,y)=x^{3}-9xy-4y^{2}
extreme y=4-6x^2
extreme\:y=4-6x^{2}
extreme (x^2+2)/(x-3)
extreme\:\frac{x^{2}+2}{x-3}
extreme f(x)=5+(48)/x+3x^2
extreme\:f(x)=5+\frac{48}{x}+3x^{2}
extreme E(x,y)=15xy-22xy
extreme\:E(x,y)=15xy-22xy
extreme f(x)=4(x-4)^{2/3}
extreme\:f(x)=4(x-4)^{\frac{2}{3}}
extreme f(x)=2x^2+16x-5
extreme\:f(x)=2x^{2}+16x-5
extreme f(x)=x(x-1)^5
extreme\:f(x)=x(x-1)^{5}
extreme 2x^2-30x^2+54x+2
extreme\:2x^{2}-30x^{2}+54x+2
extreme y=(x-6)ln(x-6)
extreme\:y=(x-6)\ln(x-6)
extreme f(x,y)=(2y^2+x^2)e^{-(x^2+y^2-3)}
extreme\:f(x,y)=(2y^{2}+x^{2})e^{-(x^{2}+y^{2}-3)}
extreme p(x)=12x^4-62x^3+ax^2-98x+30
extreme\:p(x)=12x^{4}-62x^{3}+ax^{2}-98x+30
extreme y=3z^2-3x^2
extreme\:y=3z^{2}-3x^{2}
extreme 4-y^3-x^2-3xy
extreme\:4-y^{3}-x^{2}-3xy
extreme (10x^3-2)/(2x^3+5x^2+9x)
extreme\:\frac{10x^{3}-2}{2x^{3}+5x^{2}+9x}
extreme-6x^2+336x-4320
extreme\:-6x^{2}+336x-4320
extreme y=\sqrt[3]{x}+1/(\sqrt[3]{x)}
extreme\:y=\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}
extreme f(x)=(12x)/(3.5x^2+2.5)
extreme\:f(x)=\frac{12x}{3.5x^{2}+2.5}
extreme f(y)=14x^2-2x^3+2y^2+4xy
extreme\:f(y)=14x^{2}-2x^{3}+2y^{2}+4xy
extreme f(x)=x(152-x)
extreme\:f(x)=x(152-x)
extreme f(x,y)=7x^2y+9xy^2
extreme\:f(x,y)=7x^{2}y+9xy^{2}
extreme f(x)=x^2+xy+y^2+2x-2y+6
extreme\:f(x)=x^{2}+xy+y^{2}+2x-2y+6
extreme f(x)=165000x-100x^2
extreme\:f(x)=165000x-100x^{2}
extreme x/(x^2+81)
extreme\:\frac{x}{x^{2}+81}
extreme f(x)= 1/(sqrt(2pi))e^{(-x^2)/2}
extreme\:f(x)=\frac{1}{\sqrt{2π}}e^{\frac{-x^{2}}{2}}
extreme f(x)=(2x)/(x^2+16),-5<= x<= 5
extreme\:f(x)=\frac{2x}{x^{2}+16},-5\le\:x\le\:5
extreme f(x)=(3+x)/(7-x),-7<= x<= 0
extreme\:f(x)=\frac{3+x}{7-x},-7\le\:x\le\:0
extreme f(x)=e^{6x^2+4y^2+10}
extreme\:f(x)=e^{6x^{2}+4y^{2}+10}
extreme f(x,y)=(x^2-y^2)e^{-(x^2+y^2)}
extreme\:f(x,y)=(x^{2}-y^{2})e^{-(x^{2}+y^{2})}
extreme f(x)=x(x+3)e^{-2x}
extreme\:f(x)=x(x+3)e^{-2x}
extreme f(x)=-45x^2+400x
extreme\:f(x)=-45x^{2}+400x
extreme f(x)=3x^2-2x+5
extreme\:f(x)=3x^{2}-2x+5
extreme f(x)=((2x^2+4x))/((2+x^2))
extreme\:f(x)=\frac{(2x^{2}+4x)}{(2+x^{2})}
extreme f(x)=x^3+8x+12
extreme\:f(x)=x^{3}+8x+12
extreme 7-6x-x^3
extreme\:7-6x-x^{3}
extreme f(x)=x(e^{-x/3})
extreme\:f(x)=x(e^{-\frac{x}{3}})
extreme f(x)=x^2-14x+4
extreme\:f(x)=x^{2}-14x+4
extreme f(x)=x^2-14x+6
extreme\:f(x)=x^{2}-14x+6
extreme f(x,y)=x^3+3xy+y^3+k
extreme\:f(x,y)=x^{3}+3xy+y^{3}+k
extreme f(x)=5+5x-5x^2,0<= x<= 3
extreme\:f(x)=5+5x-5x^{2},0\le\:x\le\:3
extreme f(x)=-2x^2-x+4
extreme\:f(x)=-2x^{2}-x+4
extreme y=1250sin(2x)
extreme\:y=1250\sin(2x)
extreme f(x,y)=e^{2y-x^2-y^2}
extreme\:f(x,y)=e^{2y-x^{2}-y^{2}}
extreme f(x,y)=x^2(x+y)+6xy
extreme\:f(x,y)=x^{2}(x+y)+6xy
extreme f(x)=-4x^3+12x^2-10
extreme\:f(x)=-4x^{3}+12x^{2}-10
extreme f(x)=2x+7ln(x)
extreme\:f(x)=2x+7\ln(x)
extreme 68-11
extreme\:68-11
Find Where Increasing/Decreasing Using Derivatives f(x)=x^3-75x+3
monotone\:f(x)=x^{3}-75x+3
Find the Axis of Symmetry f(x)=(x-5)^2-4
symmetry\:y=(x-5)^{2}-4
Find the Local Maxima and Minima -(x+1)(x-1)^2
extreme\:-(x+1)(x-1)^{2}
Find the End Behavior f(x)=-(x-1)(x+2)(x+1)^2
endbehavior\:f(x)=-(x-1)(x+2)(x+1)^{2}
Find the x and y Intercepts x=y
intercepts\:x
Find the Concavity f(x)=x/(x^2+1)
concavity\:f(x)=\frac{x}{(x^{2}+1)}
Convert to Fahrenheit -44c
f(c)=-44c
Find the Absolute Max and Min over the Interval f(x)=8-x , (-3,5)
extreme\:f(x)=8-x,(-3,5)
Describe the Transformation f(x)=x^2-4
transform\:f(x)=x^{2}-4
Find the Domain and Range y=x
domain\&range\:y=x
Find Amplitude, Period, and Phase Shift y=tan(x-pi/2)
shift\:y=\tan(\frac{x-π}{2})
Find the Domain and Range y=tan(x)
domain\&range\:y=\tan(x)
Find the Excluded Values (x-3)/(x^2-4)
holes\:\frac{(x-3)}{(x^{2}-4)}
1
..
1319
1320
1321
1322
1323
1324