Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=4x
range\:f(x)=4x
distance (7,2),(7,7)
distance\:(7,2),(7,7)
inverse of f(x)= 2/3 x+1
inverse\:f(x)=\frac{2}{3}x+1
range of-1/(x-1)
range\:-\frac{1}{x-1}
line (100,10500),(120,11000)
line\:(100,10500),(120,11000)
inverse of 4x-9
inverse\:4x-9
range of 2/x
range\:\frac{2}{x}
inflection x^2-3x-4
inflection\:x^{2}-3x-4
asymptotes of x-(256)/(x^2)
asymptotes\:x-\frac{256}{x^{2}}
inverse of f(x)=4
inverse\:f(x)=4
inverse of f(x)=(-2-\sqrt[3]{4x})/2
inverse\:f(x)=\frac{-2-\sqrt[3]{4x}}{2}
domain of 1-e^{1-x^2}
domain\:1-e^{1-x^{2}}
periodicity of f(x)=cos(x-pi/2)
periodicity\:f(x)=\cos(x-\frac{π}{2})
inverse of f(x)=0.9
inverse\:f(x)=0.9
midpoint (a,b),(-a,3b)
midpoint\:(a,b),(-a,3b)
domain of (2x-3)/(x^2+4)
domain\:\frac{2x-3}{x^{2}+4}
intercepts of f(x)=x+y=3
intercepts\:f(x)=x+y=3
domain of y=(1-2x)/(3+x)
domain\:y=\frac{1-2x}{3+x}
inverse of y=x-1
inverse\:y=x-1
asymptotes of f(x)=(6x-x^2)/(x^4-36x^2)
asymptotes\:f(x)=\frac{6x-x^{2}}{x^{4}-36x^{2}}
shift 3tan(2x-pi/3)
shift\:3\tan(2x-\frac{π}{3})
domain of f(x)=3x^4-6x^2+2x-3
domain\:f(x)=3x^{4}-6x^{2}+2x-3
midpoint (5,-9),(9,10)
midpoint\:(5,-9),(9,10)
inverse of f(x)=((-3x+5))/(7x+4)
inverse\:f(x)=\frac{(-3x+5)}{7x+4}
inverse of f(x)= 3/4 x^2+1
inverse\:f(x)=\frac{3}{4}x^{2}+1
range of f(x)= 1/(1+sqrt(x^2-1))
range\:f(x)=\frac{1}{1+\sqrt{x^{2}-1}}
asymptotes of f(x)=(x^2+5x-14)/(x^2-4)
asymptotes\:f(x)=\frac{x^{2}+5x-14}{x^{2}-4}
range of f(x)=sqrt(x+3)-2
range\:f(x)=\sqrt{x+3}-2
inverse of (x+1)^2
inverse\:(x+1)^{2}
parity 1/(x-5)
parity\:\frac{1}{x-5}
asymptotes of (x^2-9)/(x^2+4x-21)
asymptotes\:\frac{x^{2}-9}{x^{2}+4x-21}
intercepts of y=x^2+4x
intercepts\:y=x^{2}+4x
intercepts of f(x)=2x+2y-8=0
intercepts\:f(x)=2x+2y-8=0
critical f(x)=ln(x-8)
critical\:f(x)=\ln(x-8)
extreme 18x^2+14x
extreme\:18x^{2}+14x
domain of f(x)= 1/(2x-6)
domain\:f(x)=\frac{1}{2x-6}
intercepts of y=9x
intercepts\:y=9x
extreme f(x)=2x^3-3x^2-36x+5
extreme\:f(x)=2x^{3}-3x^{2}-36x+5
inverse of f(x)=x^3-3
inverse\:f(x)=x^{3}-3
slope ofintercept-2x+5y=10
slopeintercept\:-2x+5y=10
distance (2,3),(-3,15)
distance\:(2,3),(-3,15)
slope of 2x+3y=8
slope\:2x+3y=8
parity f(x)=4
parity\:f(x)=4
slope of y= 3/4 x+1
slope\:y=\frac{3}{4}x+1
asymptotes of f(x)=(x^2+2x+1)/(4x^2-x-5)
asymptotes\:f(x)=\frac{x^{2}+2x+1}{4x^{2}-x-5}
inverse of f(x)= 1/2 log_{3}(x)
inverse\:f(x)=\frac{1}{2}\log_{3}(x)
domain of 4x+12
domain\:4x+12
domain of-x
domain\:-x
monotone f(x)=x^3-27x
monotone\:f(x)=x^{3}-27x
inverse of 7x+5
inverse\:7x+5
inverse of 6x+2
inverse\:6x+2
inverse of f(x)=-sqrt(x-2)
inverse\:f(x)=-\sqrt{x-2}
range of-|x|-3
range\:-\left|x\right|-3
intercepts of (x^2-4x+3)/(-x+3)
intercepts\:\frac{x^{2}-4x+3}{-x+3}
domain of (\sqrt[3]{x-2})/(x^3-2)
domain\:\frac{\sqrt[3]{x-2}}{x^{3}-2}
slope of 9x-3y=15
slope\:9x-3y=15
asymptotes of f(x)=(x^2+5x)/(4x+20)
asymptotes\:f(x)=\frac{x^{2}+5x}{4x+20}
range of (3-2x)(12-x)
range\:(3-2x)(12-x)
inverse of f(x)=(x-1)/(x+2)
inverse\:f(x)=\frac{x-1}{x+2}
domain of f(x)=(1-6sqrt(x))/x
domain\:f(x)=\frac{1-6\sqrt{x}}{x}
inflection f(x)=x^{2/3}-3
inflection\:f(x)=x^{\frac{2}{3}}-3
inverse of 7x+2
inverse\:7x+2
domain of f(10)= 1/(sqrt(x-1))
domain\:f(10)=\frac{1}{\sqrt{x-1}}
inverse of f(x)=sqrt(5x+15)
inverse\:f(x)=\sqrt{5x+15}
domain of f(x)=sqrt(t-16)
domain\:f(x)=\sqrt{t-16}
symmetry 5x^2-4y^2=2
symmetry\:5x^{2}-4y^{2}=2
midpoint (-3,-4),(-5,-3)
midpoint\:(-3,-4),(-5,-3)
critical f(x)=-x^2+4x-4
critical\:f(x)=-x^{2}+4x-4
extreme f(x)=-x^4+8x^2+6
extreme\:f(x)=-x^{4}+8x^{2}+6
domain of f(x)= 1/(sqrt(2-3x))
domain\:f(x)=\frac{1}{\sqrt{2-3x}}
inverse of f(x)=(2x-1)/(4x+6)
inverse\:f(x)=\frac{2x-1}{4x+6}
domain of f(x)=sqrt(36-t^2)
domain\:f(x)=\sqrt{36-t^{2}}
perpendicular y=x,(-1,3)
perpendicular\:y=x,(-1,3)
inverse of f(x)=-2/3 x-10/3
inverse\:f(x)=-\frac{2}{3}x-\frac{10}{3}
inverse of f(x)=100000-2500x
inverse\:f(x)=100000-2500x
range of f(x)= 1/2 (x-3)^2+4
range\:f(x)=\frac{1}{2}(x-3)^{2}+4
intercepts of f(x)=-2x-1
intercepts\:f(x)=-2x-1
domain of 2x^2+24x+76
domain\:2x^{2}+24x+76
inverse of f(x)=5-1/5 x
inverse\:f(x)=5-\frac{1}{5}x
domain of f(x)=(3+x)/(sqrt(x+2))
domain\:f(x)=\frac{3+x}{\sqrt{x+2}}
distance (x,-4),(-4,-1)
distance\:(x,-4),(-4,-1)
inverse of f(x)=(18)/x
inverse\:f(x)=\frac{18}{x}
domain of f(x)=sqrt(\sqrt{x^2-16)-3}
domain\:f(x)=\sqrt{\sqrt{x^{2}-16}-3}
inverse of f(x)=(2x-3)/5
inverse\:f(x)=\frac{2x-3}{5}
domain of f(x)=(x^2+2)/(x-1)
domain\:f(x)=\frac{x^{2}+2}{x-1}
inverse of f(x)=-2(x-1)^2+27=9+y
inverse\:f(x)=-2(x-1)^{2}+27=9+y
monotone f(x)=-2^{x+1}
monotone\:f(x)=-2^{x+1}
range of (cos(8θ)-cos(4θ))/2
range\:\frac{\cos(8θ)-\cos(4θ)}{2}
shift 2-3cos(2x)
shift\:2-3\cos(2x)
asymptotes of log_{5}(x)
asymptotes\:\log_{5}(x)
intercepts of f(x)=-2x+7
intercepts\:f(x)=-2x+7
asymptotes of f(x)=2e^{-0.7t}
asymptotes\:f(x)=2e^{-0.7t}
asymptotes of f(x)=(81x^2-18)/(3x-2)
asymptotes\:f(x)=\frac{81x^{2}-18}{3x-2}
inverse of f(x)=(10)/x
inverse\:f(x)=\frac{10}{x}
domain of f(x)=-3(x-5)^2+4
domain\:f(x)=-3(x-5)^{2}+4
line (0,10),(1,0)
line\:(0,10),(1,0)
domain of f(x)=(x-1)^2
domain\:f(x)=(x-1)^{2}
asymptotes of f(x)=(-2x^2+3x)/(x-1)
asymptotes\:f(x)=\frac{-2x^{2}+3x}{x-1}
domain of f(x)=(2x+1)/(x-3)
domain\:f(x)=\frac{2x+1}{x-3}
domain of f(x)=-sqrt(2z+3)
domain\:f(x)=-\sqrt{2z+3}
1
..
318
319
320
321
322
..
1324