Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
parity (4x)/(x^3-x^2+1)
parity\:\frac{4x}{x^{3}-x^{2}+1}
domain of |3x+1|+1-x
domain\:\left|3x+1\right|+1-x
range of sin(7x)
range\:\sin(7x)
y= 1/2 x^2
y=\frac{1}{2}x^{2}
inverse of f(y)=3x^2+3
inverse\:f(y)=3x^{2}+3
parity f(x)=tan(x)
parity\:f(x)=\tan(x)
parity f(x)= 3/(x^2)
parity\:f(x)=\frac{3}{x^{2}}
parity arctan(cot(θ))
parity\:\arctan(\cot(θ))
line (0,5),(1,10)
line\:(0,5),(1,10)
range of sqrt(x+3)
range\:\sqrt{x+3}
extreme y=2sin(5x-30)+4
extreme\:y=2\sin(5x-30)+4
asymptotes of f(x)=(x+1)/(x-1)
asymptotes\:f(x)=\frac{x+1}{x-1}
inverse of f(x)=(5x-5)/4
inverse\:f(x)=\frac{5x-5}{4}
parallel y= 1/2 x+4
parallel\:y=\frac{1}{2}x+4
domain of 3(x+1)
domain\:3(x+1)
domain of y=x^2-4x+7
domain\:y=x^{2}-4x+7
domain of f(x)=sqrt(x^2+6)
domain\:f(x)=\sqrt{x^{2}+6}
extreme f(x,y)=x+2
extreme\:f(x,y)=x+2
asymptotes of f(x)= x/(x(x-5))
asymptotes\:f(x)=\frac{x}{x(x-5)}
inverse of y=x^7+3
inverse\:y=x^{7}+3
range of f(x)=3(2)^x-4
range\:f(x)=3(2)^{x}-4
monotone f(x)=6x^4-36x^2
monotone\:f(x)=6x^{4}-36x^{2}
slope ofintercept 2x-y=-3
slopeintercept\:2x-y=-3
slope of y=-x+4
slope\:y=-x+4
inverse of f(x)=x^2+2x-3,x<=-1
inverse\:f(x)=x^{2}+2x-3,x\le\:-1
midpoint (-3,5),(7,-9)
midpoint\:(-3,5),(7,-9)
intercepts of y=2x^2+12x-2
intercepts\:y=2x^{2}+12x-2
inverse of f(x)=(4x)/(9+x)
inverse\:f(x)=\frac{4x}{9+x}
simplify (1.1)(6.13)
simplify\:(1.1)(6.13)
midpoint (-3,-4),(4,6)
midpoint\:(-3,-4),(4,6)
inverse of ln((2-x)/(x+3))
inverse\:\ln(\frac{2-x}{x+3})
inverse of f(x)=(x+7)/2
inverse\:f(x)=\frac{x+7}{2}
slope of y= 1/2 x-3
slope\:y=\frac{1}{2}x-3
inverse of f(x)=(4x+3)/(1-8x)
inverse\:f(x)=\frac{4x+3}{1-8x}
domain of f(x)=(x-9)^2
domain\:f(x)=(x-9)^{2}
range of 16-(20x+15)^2
range\:16-(20x+15)^{2}
intercepts of (x^2)/(x-1)
intercepts\:\frac{x^{2}}{x-1}
inverse of h(x)=5(x-9)
inverse\:h(x)=5(x-9)
range of x/(2x^2+4)
range\:\frac{x}{2x^{2}+4}
inverse of f(x)=3sqrt(x)
inverse\:f(x)=3\sqrt{x}
domain of x^2-6x+7
domain\:x^{2}-6x+7
domain of f(x)=-sqrt(x+2)+3
domain\:f(x)=-\sqrt{x+2}+3
f(x)= 1/x
f(x)=\frac{1}{x}
critical f(x)=sin^2(7x)
critical\:f(x)=\sin^{2}(7x)
inverse of (3x-7)^3
inverse\:(3x-7)^{3}
inverse of 5log_{4}(x)
inverse\:5\log_{4}(x)
asymptotes of f(x)=(x^3)/(x^2-4)
asymptotes\:f(x)=\frac{x^{3}}{x^{2}-4}
parity f(x)= 3/x
parity\:f(x)=\frac{3}{x}
domain of f(x)=ln(t+4)
domain\:f(x)=\ln(t+4)
line (-4,-3),(5,-1)
line\:(-4,-3),(5,-1)
range of (5-8x)/(2x)
range\:\frac{5-8x}{2x}
domain of f(x)=x^4-6x
domain\:f(x)=x^{4}-6x
inverse of f(x)= 3/(x-1)
inverse\:f(x)=\frac{3}{x-1}
symmetry y-4=(x-2)^2
symmetry\:y-4=(x-2)^{2}
asymptotes of x^4-x^2sin(x)+1
asymptotes\:x^{4}-x^{2}\sin(x)+1
parallel 6x+3y=10,(-13,-8)
parallel\:6x+3y=10,(-13,-8)
inverse of (5x+2)/7
inverse\:\frac{5x+2}{7}
asymptotes of f(x)=(4x-3)/(6-2x)
asymptotes\:f(x)=\frac{4x-3}{6-2x}
line (2,4),(0,6)
line\:(2,4),(0,6)
asymptotes of f(x)=(x-3)/(x^2-7x+12)
asymptotes\:f(x)=\frac{x-3}{x^{2}-7x+12}
extreme f(x)= x/(x^2+2)
extreme\:f(x)=\frac{x}{x^{2}+2}
line (-2,1),(-8,4)
line\:(-2,1),(-8,4)
inverse of f(x)=-2/3 x+6
inverse\:f(x)=-\frac{2}{3}x+6
asymptotes of f(x)=(4x+9)/(3x-2)
asymptotes\:f(x)=\frac{4x+9}{3x-2}
\begin{pmatrix}-8&\end{pmatrix}1
line (4,48),(-3,27)
line\:(4,48),(-3,27)
slope of 6x+8y=-9
slope\:6x+8y=-9
parity sec(θ)dθ
parity\:\sec(θ)dθ
domain of f(x)=6x^2
domain\:f(x)=6x^{2}
asymptotes of f(x)=(-5x)/(4x+10)
asymptotes\:f(x)=\frac{-5x}{4x+10}
inverse of f(x)=((2x-1))/(x+4)
inverse\:f(x)=\frac{(2x-1)}{x+4}
domain of x+12
domain\:x+12
domain of f(x)= 4/(sqrt(x+5))
domain\:f(x)=\frac{4}{\sqrt{x+5}}
intercepts of y= 1/(2c)-1/(2c^2)
intercepts\:y=\frac{1}{2c}-\frac{1}{2c^{2}}
range of f(x)=-6x^2+10x-7
range\:f(x)=-6x^{2}+10x-7
asymptotes of (x^3-1)/(x^2+2x-3)
asymptotes\:\frac{x^{3}-1}{x^{2}+2x-3}
midpoint (-5/2 , 1/2),(-15/2 ,-13/2)
midpoint\:(-\frac{5}{2},\frac{1}{2}),(-\frac{15}{2},-\frac{13}{2})
extreme \sqrt[3]{x}(x+4)
extreme\:\sqrt[3]{x}(x+4)
inflection f(x)=3x^{2/3}-2x
inflection\:f(x)=3x^{\frac{2}{3}}-2x
domain of 4-x^2
domain\:4-x^{2}
parity sqrt(tan(x))(sec(x))^4
parity\:\sqrt{\tan(x)}(\sec(x))^{4}
slope of 2x+18y-9=0
slope\:2x+18y-9=0
extreme f(x)=(e^x)/(x-4)
extreme\:f(x)=\frac{e^{x}}{x-4}
asymptotes of f(x)=log_{3}(x-2)+4
asymptotes\:f(x)=\log_{3}(x-2)+4
domain of f(x)=(1/(sqrt(x)))^2-4
domain\:f(x)=(\frac{1}{\sqrt{x}})^{2}-4
domain of h(x)=sqrt(2x-5)
domain\:h(x)=\sqrt{2x-5}
asymptotes of f(x)=tan(x-pi/4)
asymptotes\:f(x)=\tan(x-\frac{π}{4})
domain of 2sqrt(x+4)-1
domain\:2\sqrt{x+4}-1
extreme sqrt(81-x^4)
extreme\:\sqrt{81-x^{4}}
extreme f(x)=0.05x+20+(125)/x
extreme\:f(x)=0.05x+20+\frac{125}{x}
slope ofintercept 4x-y=-1
slopeintercept\:4x-y=-1
parallel 4x-7=-3
parallel\:4x-7=-3
intercepts of g(x)=9x-13
intercepts\:g(x)=9x-13
f(x)= 1/(x+3)
f(x)=\frac{1}{x+3}
domain of y=3+sqrt(x)
domain\:y=3+\sqrt{x}
range of f(x)=x^2-8x+15
range\:f(x)=x^{2}-8x+15
range of y=(2x+3)/(4x+1)
range\:y=\frac{2x+3}{4x+1}
line (6,5),(3,5)
line\:(6,5),(3,5)
extreme y=(x^2+1)/(x+1)
extreme\:y=\frac{x^{2}+1}{x+1}
domain of f(x)=(x^2)/(x+2)
domain\:f(x)=\frac{x^{2}}{x+2}
1
..
370
371
372
373
374
..
1324