Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of \sqrt[3]{z}
\int\:\sqrt[3]{z}dz
limit as x approaches infinity of 8x^2+3
\lim\:_{x\to\:\infty\:}(8x^{2}+3)
integral from-2 to 3 of (2-|x-1|)
\int\:_{-2}^{3}(2-\left|x-1\right|)dx
limit as x approaches 0 of ((5^x-3^x))/x
\lim\:_{x\to\:0}(\frac{(5^{x}-3^{x})}{x})
derivative of (50x/(0.01x^2+1))
\frac{d}{dx}(\frac{50x}{0.01x^{2}+1})
integral of (x^2+1)^{-3/2}
\int\:(x^{2}+1)^{-\frac{3}{2}}dx
derivative of f(x)=x^4-4x^3
derivative\:f(x)=x^{4}-4x^{3}
integral of x*sqrt(1-x^4)
\int\:x\cdot\:\sqrt{1-x^{4}}dx
sum from n=0 to infinity of (1/2)^{n+1}
\sum\:_{n=0}^{\infty\:}(\frac{1}{2})^{n+1}
y^'+y/(x+1)=0
y^{\prime\:}+\frac{y}{x+1}=0
derivative of 1/9 (1-(3x+1e^{-3x}))
\frac{d}{dx}(\frac{1}{9}(1-(3x+1)e^{-3x}))
derivative of y=(8x^2+2x+8)/(sqrt(x))
derivative\:y=\frac{8x^{2}+2x+8}{\sqrt{x}}
derivative of x/(x^2+2)
derivative\:\frac{x}{x^{2}+2}
derivative of (e^{2x}-e^x+e^{-3x}/(e^x))
\frac{d}{dx}(\frac{e^{2x}-e^{x}+e^{-3x}}{e^{x}})
(\partial)/(\partial x)(2x)
\frac{\partial\:}{\partial\:x}(2x)
integral of 1/(x^2+1)
\int\:\frac{1}{x^{2}+1}dx
(\partial)/(\partial x)(zsin(x))
\frac{\partial\:}{\partial\:x}(z\sin(x))
derivative of ln(4x^2)
\frac{d}{dx}(\ln(4x^{2}))
area sin^2(x),sin^4(x),0,pi
area\:\sin^{2}(x),\sin^{4}(x),0,π
derivative of (sqrt(2)^x)
\frac{d}{dx}((\sqrt{2})^{x})
tangent of 4x-x^2
tangent\:4x-x^{2}
integral of cos(9x)sin(5x)
\int\:\cos(9x)\sin(5x)dx
y^3-(18x+6)+3xy^2(dy)/(dx)=0
y^{3}-(18x+6)+3xy^{2}\frac{dy}{dx}=0
derivative of ((1+sin(3x)/(3-2x))^{-1})
\frac{d}{dx}((\frac{1+\sin(3x)}{3-2x})^{-1})
sum from n=0 to infinity of (1+x)^n
\sum\:_{n=0}^{\infty\:}(1+x)^{n}
integral of 11x^{4/7}+6x^{-6/7}
\int\:11x^{\frac{4}{7}}+6x^{-\frac{6}{7}}dx
integral of 5x-x
\int\:5x-xdx
integral of \sqrt[5]{y^2}
\int\:\sqrt[5]{y^{2}}dy
derivative of (sqrt(1+x))/2
derivative\:\frac{\sqrt{1+x}}{2}
tangent of-2x^2,\at x=0
tangent\:-2x^{2},\at\:x=0
derivative of (sqrt(2)/(e^x+1/(e^x)))
\frac{d}{dx}(\frac{\sqrt{2}}{e^{x}+\frac{1}{e^{x}}})
integral of (sqrt(1-t^2))/(t^4)
\int\:\frac{\sqrt{1-t^{2}}}{t^{4}}dt
integral of 10ln(x^2-1)
\int\:10\ln(x^{2}-1)dx
tangent of (2x-6)/(x+1),\at x=0
tangent\:\frac{2x-6}{x+1},\at\:x=0
derivative of t/(sqrt(t^2+36))
derivative\:\frac{t}{\sqrt{t^{2}+36}}
e^x(dy)/(dx)=2
e^{x}\frac{dy}{dx}=2
y^{''}+y^'+4.25y=221cos(4.5t)
y^{\prime\:\prime\:}+y^{\prime\:}+4.25y=221\cos(4.5t)
integral from 0 to 4 of 1/(sqrt(4-x))
\int\:_{0}^{4}\frac{1}{\sqrt{4-x}}dx
derivative of (2x^3+8)/x
derivative\:\frac{2x^{3}+8}{x}
taylor 2/(1-x^2),0
taylor\:\frac{2}{1-x^{2}},0
integral of cos(x)cos(x)
\int\:\cos(x)\cos(x)dx
(\partial)/(\partial x)(sqrt(90-4x^2-1y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{90-4x^{2}-1y^{2}})
y^'=(t^2)/y (1+t^3)
y^{\prime\:}=\frac{t^{2}}{y}(1+t^{3})
integral from 0 to 13 of 8x
\int\:_{0}^{13}8xdx
(3x+ye^{y/x})dx-xe^{y/x}dy=0
(3x+ye^{\frac{y}{x}})dx-xe^{\frac{y}{x}}dy=0
-10x^2y+y^'=5x^2
-10x^{2}y+y^{\prime\:}=5x^{2}
limit as x approaches 5+of log_{3}(x-5)
\lim\:_{x\to\:5+}(\log_{3}(x-5))
limit as x approaches 0 of 4/(e^x+1)
\lim\:_{x\to\:0}(\frac{4}{e^{x}+1})
limit as x approaches 1 of ((1+x)(1-x)}{x*\frac{sin(pix))/x}
\lim\:_{x\to\:1}(\frac{(1+x)(1-x)}{x\cdot\:\frac{\sin(πx)}{x}})
integral of 1/(sqrt(x^2+6))
\int\:\frac{1}{\sqrt{x^{2}+6}}dx
(\partial)/(\partial x)((2x-3t)/(3x+5t))
\frac{\partial\:}{\partial\:x}(\frac{2x-3t}{3x+5t})
integral of 6/(x(ln(x))^2)
\int\:\frac{6}{x(\ln(x))^{2}}dx
derivative of 3t^2-3
derivative\:3t^{2}-3
integral of (sqrt(y^2-25))/(y^3)
\int\:\frac{\sqrt{y^{2}-25}}{y^{3}}dy
integral of 1/(600-x)
\int\:\frac{1}{600-x}dx
implicit (dy)/(dx),3x-tan(y)=4
implicit\:\frac{dy}{dx},3x-\tan(y)=4
integral from 3 to 5 of (2t)/(t^2-4t+4)
\int\:_{3}^{5}\frac{2t}{t^{2}-4t+4}dt
derivative of 2e^x+2/(\sqrt[3]{x)}
derivative\:2e^{x}+\frac{2}{\sqrt[3]{x}}
y^'=(4x^3+y^3)/(xy^2)
y^{\prime\:}=\frac{4x^{3}+y^{3}}{xy^{2}}
integral of (x^2+x)^2
\int\:(x^{2}+x)^{2}dx
sum from n=0 to infinity of 1/(2(2n+1))
\sum\:_{n=0}^{\infty\:}\frac{1}{2(2n+1)}
integral of (x^7-2x^6)^4(7x^6-12x^5)
\int\:(x^{7}-2x^{6})^{4}(7x^{6}-12x^{5})dx
limit as x approaches 0 of (50x^2)/(sin(x)+50x^2)
\lim\:_{x\to\:0}(\frac{50x^{2}}{\sin(x)+50x^{2}})
integral from 0 to 1 of e^{2x}
\int\:_{0}^{1}e^{2x}dx
tangent of f(x)=x^3-2x-2,\at x=-1
tangent\:f(x)=x^{3}-2x-2,\at\:x=-1
derivative of f(t)= 9/(t^2)
derivative\:f(t)=\frac{9}{t^{2}}
x(y^')=4y
x(y^{\prime\:})=4y
tangent of x^3+2
tangent\:x^{3}+2
integral of 4ln(x^2-1)
\int\:4\ln(x^{2}-1)dx
integral of 2x^2-4x-6
\int\:2x^{2}-4x-6dx
derivative of x^{9/x}
\frac{d}{dx}(x^{\frac{9}{x}})
(dy)/(dt)=2100-300(y/(17000))
\frac{dy}{dt}=2100-300(\frac{y}{17000})
integral of 5/(x^6)
\int\:\frac{5}{x^{6}}dx
derivative of ln((x+3^{-1}))
\frac{d}{dx}(\ln((x+3)^{-1}))
limit as x approaches 0 of (x^2+2x-1)/x
\lim\:_{x\to\:0}(\frac{x^{2}+2x-1}{x})
taylor sqrt(1-x^2)
taylor\:\sqrt{1-x^{2}}
limit as x approaches infinity of 9^{-x}
\lim\:_{x\to\:\infty\:}(9^{-x})
integral of (48x)/(8x^2+e)
\int\:\frac{48x}{8x^{2}+e}dx
derivative of x^2+3x-10
\frac{d}{dx}(x^{2}+3x-10)
laplacetransform t*sin(5t+0.2pi)
laplacetransform\:t\cdot\:\sin(5t+0.2π)
tangent of f(x)=7+4x^2-2x^3,\at x=2
tangent\:f(x)=7+4x^{2}-2x^{3},\at\:x=2
f(x)=xsqrt(x+3)
f(x)=x\sqrt{x+3}
derivative of 4-3x-5x^2
\frac{d}{dx}(4-3x-5x^{2})
integral of-(5\sqrt[3]{x^2})/3
\int\:-\frac{5\sqrt[3]{x^{2}}}{3}dx
integral from 0 to 1 of t^2
\int\:_{0}^{1}t^{2}dt
derivative of x^2e^x-2xe^x+4e^x
derivative\:x^{2}e^{x}-2xe^{x}+4e^{x}
derivative of 8ln(x)
derivative\:8\ln(x)
derivative of e^{sqrt(x^2+1)}
\frac{d}{dx}(e^{\sqrt{x^{2}+1}})
y^'=20-5y
y^{\prime\:}=20-5y
integral of sin^2(x)x
\int\:\sin^{2}(x)xdx
y^'=-ay+b
y^{\prime\:}=-ay+b
tangent of f(x)=2x^2+x-1,\at x=-2
tangent\:f(x)=2x^{2}+x-1,\at\:x=-2
derivative of xe^{(-(x^2/8)})
\frac{d}{dx}(xe^{(-\frac{x^{2}}{8})})
derivative of f(x)=-1/6 (x^{-6}-x^{12})
derivative\:f(x)=-\frac{1}{6}(x^{-6}-x^{12})
xy^'+y=x^{3/2}y^{5/2}ln(x)
xy^{\prime\:}+y=x^{\frac{3}{2}}y^{\frac{5}{2}}\ln(x)
tangent of e^{6x}
tangent\:e^{6x}
derivative of (x+9)/(sqrt(x))
derivative\:\frac{x+9}{\sqrt{x}}
d/(dt)(e^{-t}sin(2t))
\frac{d}{dt}(e^{-t}\sin(2t))
slope ofintercept (-4,0),(1,-5)
slopeintercept\:(-4,0),(1,-5)
tangent of f(x)= 1/2 x^2,\at x=-1
tangent\:f(x)=\frac{1}{2}x^{2},\at\:x=-1
1
..
1108
1109
1110
1111
1112
..
2459