Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
y'=0.027y(1-y/(1527))
y\prime\:=0.027y(1-\frac{y}{1527})
derivative of ln(3)+e^{x^e}
derivative\:\ln(3)+e^{x^{e}}
y^{''}-5y^'=10x+3
y^{\prime\:\prime\:}-5y^{\prime\:}=10x+3
xyy^'+x^2+y^2=0
xyy^{\prime\:}+x^{2}+y^{2}=0
integral of (5x^4+6)/(x^5+6x)
\int\:\frac{5x^{4}+6}{x^{5}+6x}dx
limit as x approaches 5+of 4/(x-5)
\lim\:_{x\to\:5+}(\frac{4}{x-5})
limit as x approaches 0 of x^8-1/x
\lim\:_{x\to\:0}(x^{8}-\frac{1}{x})
derivative of sin^3(2x-cos(2x))
\frac{d}{dx}(\sin^{3}(2x)-\cos(2x))
integral of e^{-v}sin(wv)
\int\:e^{-v}\sin(wv)dv
(dy)/(dt)=-t/y ,y(0)=4
\frac{dy}{dt}=-\frac{t}{y},y(0)=4
derivative of (x^2+2x/(1-x^2))
\frac{d}{dx}(\frac{x^{2}+2x}{1-x^{2}})
tangent of x^4+6x^2-x
tangent\:x^{4}+6x^{2}-x
integral of (sin(y))/(cos(y))
\int\:\frac{\sin(y)}{\cos(y)}dy
(\partial)/(\partial y)(-e^{-x}sin(y))
\frac{\partial\:}{\partial\:y}(-e^{-x}\sin(y))
(\partial)/(\partial y)(4x^2+4xy-3y^2+4y-1)
\frac{\partial\:}{\partial\:y}(4x^{2}+4xy-3y^{2}+4y-1)
limit as x approaches 1 of x-1
\lim\:_{x\to\:1}(x-1)
integral of sec^2(x)+sec(2x)tan(2x)
\int\:\sec^{2}(x)+\sec(2x)\tan(2x)dx
derivative of p(θ)=sqrt(7θ)
derivative\:p(θ)=\sqrt{7θ}
f(x)=ln(x+4)
f(x)=\ln(x+4)
integral of 1/(2sin(x)-3cos(x)-5)
\int\:\frac{1}{2\sin(x)-3\cos(x)-5}dx
limit as x approaches infinity of 0/0
\lim\:_{x\to\:\infty\:}(\frac{0}{0})
inverse oflaplace (s+3)/((s+1)^2)
inverselaplace\:\frac{s+3}{(s+1)^{2}}
(dy)/(dt)=-4(y-2)
\frac{dy}{dt}=-4(y-2)
d/(dy)(6y)
\frac{d}{dy}(6y)
derivative of y=ln(sqrt((a+bx)/(a-bx)))
derivative\:y=\ln(\sqrt{\frac{a+bx}{a-bx}})
taylor cos(x+1)
taylor\:\cos(x+1)
(\partial)/(\partial x)(12y^5x^3+35y^8x^6)
\frac{\partial\:}{\partial\:x}(12y^{5}x^{3}+35y^{8}x^{6})
6(t+1)(dy)/(dt)-5y=5t
6(t+1)\frac{dy}{dt}-5y=5t
limit as x approaches 0 of ((x^2-2))/x
\lim\:_{x\to\:0}(\frac{(x^{2}-2)}{x})
d/(d{x)}({x}^4+{y}^4+{z}^4-4{x}{y}{z})
\frac{d}{d{x}}({x}^{4}+{y}^{4}+{z}^{4}-4{x}{y}{z})
integral of x/(x-3)
\int\:\frac{x}{x-3}dx
derivative of-x^3+x
\frac{d}{dx}(-x^{3}+x)
area 4cos(7x),4-4cos(7x),0, pi/7
area\:4\cos(7x),4-4\cos(7x),0,\frac{π}{7}
inverse oflaplace ((s+1))/(s^2+1)
inverselaplace\:\frac{(s+1)}{s^{2}+1}
derivative of 9/x
derivative\:\frac{9}{x}
limit as x approaches 0-of 3^{1/x}
\lim\:_{x\to\:0-}(3^{\frac{1}{x}})
integral of (x^2)/(xsqrt(x^2-x+1))
\int\:\frac{x^{2}}{x\sqrt{x^{2}-x+1}}dx
integral of xcos(1/2 x)
\int\:x\cos(\frac{1}{2}x)dx
y^{''}+3y^'+2y=x+6e^x,y(0)=0,y^'(0)=1
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=x+6e^{x},y(0)=0,y^{\prime\:}(0)=1
tangent of y=sin(xy)+pi,(1,pi)
tangent\:y=\sin(xy)+π,(1,π)
7(d^2y)/(dx^2)+4(dy)/(dx)+9y=0
7\frac{d^{2}y}{dx^{2}}+4\frac{dy}{dx}+9y=0
tangent of f(x)=x^4+3x^2-x,(1,3)
tangent\:f(x)=x^{4}+3x^{2}-x,(1,3)
integral from 0 to a of x
\int\:_{0}^{a}xdx
integral from 0 to 1 of 6x^2+4x-3+4e^{4x}
\int\:_{0}^{1}6x^{2}+4x-3+4e^{4x}dx
y^{''}-5y^'+6y=2e^t
y^{\prime\:\prime\:}-5y^{\prime\:}+6y=2e^{t}
slope of (5,2),(2,-3)
slope\:(5,2),(2,-3)
derivative of x/(x^4+1)
\frac{d}{dx}(\frac{x}{x^{4}+1})
tangent of y=(x^3-16x)^{14},(4,0)
tangent\:y=(x^{3}-16x)^{14},(4,0)
derivative of 1/(\sqrt[3]{(5-x^3)^5)}
derivative\:\frac{1}{\sqrt[3]{(5-x^{3})^{5}}}
y^'+4xy=x^3e^{x^2},y(0)=-1
y^{\prime\:}+4xy=x^{3}e^{x^{2}},y(0)=-1
integral of xcosh(2x^2-3)
\int\:x\cosh(2x^{2}-3)dx
inverse oflaplace (e^{-s})/((s+1)^2+1)
inverselaplace\:\frac{e^{-s}}{(s+1)^{2}+1}
integral from 0 to pi of 2sin^4(x)
\int\:_{0}^{π}2\sin^{4}(x)dx
integral of (x^3)/(x^2+x+1)
\int\:\frac{x^{3}}{x^{2}+x+1}dx
x^2y^{''}-7xy^'-20y=0
x^{2}y^{\prime\:\prime\:}-7xy^{\prime\:}-20y=0
y^{''}+9y=30sin(t)
y^{\prime\:\prime\:}+9y=30\sin(t)
derivative of f(x)=e^xsqrt(x)
derivative\:f(x)=e^{x}\sqrt{x}
area y=8cos(3x),y=8sin(3x),(0, pi/(12))
area\:y=8\cos(3x),y=8\sin(3x),(0,\frac{π}{12})
tangent of f(x)= 5/(sqrt(x)),(1,5)
tangent\:f(x)=\frac{5}{\sqrt{x}},(1,5)
derivative of (x^2+x^3^4)
\frac{d}{dx}((x^{2}+x^{3})^{4})
(\partial)/(\partial x)(x*y^2*e^z)
\frac{\partial\:}{\partial\:x}(x\cdot\:y^{2}\cdot\:e^{z})
derivative of y=cos^3(pit-16)
derivative\:y=\cos^{3}(πt-16)
tangent of f(x)=x^4+2x^2-x,(1,2)
tangent\:f(x)=x^{4}+2x^{2}-x,(1,2)
derivative of x,x^2-y,x+y^2
\frac{d}{dx}(x,x^{2}-y,x+y^{2})
integral of 5/((8z-1)^{7/8)}
\int\:\frac{5}{(8z-1)^{\frac{7}{8}}}dz
derivative of e^2+ln(4)
derivative\:e^{2}+\ln(4)
limit as x approaches 0-of 1/x
\lim\:_{x\to\:0-}(\frac{1}{x})
limit as x approaches 2 of (x-2)/(4-x^2)
\lim\:_{x\to\:2}(\frac{x-2}{4-x^{2}})
(\partial}{\partial x}(\frac{x^2-y^2)/2)
\frac{\partial\:}{\partial\:x}(\frac{x^{2}-y^{2}}{2})
(\partial)/(\partial x)(1/((x+3y)))
\frac{\partial\:}{\partial\:x}(\frac{1}{(x+3y)})
derivative of 9/(4(1+x^{5/2)})
\frac{d}{dx}(\frac{9}{4(1+x)^{\frac{5}{2}}})
integral of x/(sqrt(3-x^4))
\int\:\frac{x}{\sqrt{3-x^{4}}}dx
derivative of (x^{3/2})/3-x^{1/2}
derivative\:\frac{x^{\frac{3}{2}}}{3}-x^{\frac{1}{2}}
derivative of {f}(x*e^{1/({f)(x)}})
\frac{d}{dx}({f}(x)\cdot\:e^{\frac{1}{{f}(x)}})
derivative of 6(x+2)^{1/2}
derivative\:6(x+2)^{\frac{1}{2}}
integral from 0 to 6 of x^2sqrt(36-x^2)
\int\:_{0}^{6}x^{2}\sqrt{36-x^{2}}dx
y=(3x^5-7x^2-4)/(x^2)
y=\frac{3x^{5}-7x^{2}-4}{x^{2}}
derivative of 4^{e^x}
\frac{d}{dx}(4^{e^{x}})
derivative of e^{-,\at}
derivative\:e^{-,\at\:}
y^{''}+4y=3sec(2x)
y^{\prime\:\prime\:}+4y=3\sec(2x)
derivative of (3x^2+1)(2x+2)^2
derivative\:(3x^{2}+1)(2x+2)^{2}
integral of ((x+5))/((x+3)(x-2)^2)
\int\:\frac{(x+5)}{(x+3)(x-2)^{2}}dx
(\partial)/(\partial x)(e^x+sin(y))
\frac{\partial\:}{\partial\:x}(e^{x}+\sin(y))
limit as x approaches 0+of ln(sinh(x))
\lim\:_{x\to\:0+}(\ln(\sinh(x)))
derivative of-2sin(x-x)
\frac{d}{dx}(-2\sin(x)-x)
f(x)=x+sin(x)
f(x)=x+\sin(x)
derivative of (89t)/(99t-89)
derivative\:\frac{89t}{99t-89}
integral from 0 to 5 of 1/(x^2)
\int\:_{0}^{5}\frac{1}{x^{2}}dx
limit as x approaches pi/2 of 9sin(x)
\lim\:_{x\to\:\frac{π}{2}}(9\sin(x))
derivative of log_{e}(7x^2)
derivative\:\log_{e}(7x^{2})
derivative of x^{sin(x})
\frac{d}{dx}(x^{\sin(x)})
limit as h approaches 0 of (ln(1+h))/h
\lim\:_{h\to\:0}(\frac{\ln(1+h)}{h})
maclaurin e^{-3x}
maclaurin\:e^{-3x}
(f(x)(x^2))'
(f(x)(x^{2}))\prime\:
f(x)=(sin(sqrt(x)))/(cos(ln(-x)))
f(x)=\frac{\sin(\sqrt{x})}{\cos(\ln(-x))}
slope of xy-4y^2=8
slope\:xy-4y^{2}=8
integral of \sqrt[5]{x^3}
\int\:\sqrt[5]{x^{3}}dx
integral of ((2t^2+tsqrt(t)-1))/(t^2)
\int\:\frac{(2t^{2}+t\sqrt{t}-1)}{t^{2}}dt
integral of 1/(sin(y)+1)
\int\:\frac{1}{\sin(y)+1}dy
area y=x^3,x=y^2-2
area\:y=x^{3},x=y^{2}-2
1
..
1173
1174
1175
1176
1177
..
2459