Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)=(1+2x)^2,9,\at x=1
tangent\:f(x)=(1+2x)^{2},9,\at\:x=1
integral of (ln^2(3x))/x
\int\:\frac{\ln^{2}(3x)}{x}dx
(\partial)/(\partial x)(sum)
\frac{\partial\:}{\partial\:x}(sum)
tangent of y=sqrt(-5x-10),(-4,sqrt(10))
tangent\:y=\sqrt{-5x-10},(-4,\sqrt{10})
integral of sin^3(11x)cos^9(11x)
\int\:\sin^{3}(11x)\cos^{9}(11x)dx
derivative of (x^2-1/2)
\frac{d}{dx}(\frac{x^{2}-1}{2})
derivative of y= x/3-3/x
derivative\:y=\frac{x}{3}-\frac{3}{x}
derivative of e^{x^4}*4x^3
derivative\:e^{x^{4}}\cdot\:4x^{3}
2y^{''}-5y^'-12y=0
2y^{\prime\:\prime\:}-5y^{\prime\:}-12y=0
limit as x approaches 1 of e^{2x^3-2x}
\lim\:_{x\to\:1}(e^{2x^{3}-2x})
y^{''}=e^{2t}
y^{\prime\:\prime\:}=e^{2t}
(\partial)/(\partial x)(7xy^6+x^4y^4)
\frac{\partial\:}{\partial\:x}(7xy^{6}+x^{4}y^{4})
(\partial)/(\partial x)(sqrt(6+2x))
\frac{\partial\:}{\partial\:x}(\sqrt{6+2x})
limit as x approaches 2 of x^3-ax
\lim\:_{x\to\:2}(x^{3}-ax)
integral from 0 to 49 of 1/(sqrt(49-x))
\int\:_{0}^{49}\frac{1}{\sqrt{49-x}}dx
derivative of xsin(5/x)
derivative\:x\sin(\frac{5}{x})
derivative of x/(1-ln(x-9))
\frac{d}{dx}(\frac{x}{1-\ln(x-9)})
xy^'-y= 5/4 xln(x)
xy^{\prime\:}-y=\frac{5}{4}x\ln(x)
expand (6-x)sqrt(x+15)
expand\:(6-x)\sqrt{x+15}
laplacetransform 5e^{-3t}
laplacetransform\:5e^{-3t}
derivative of A(e^{-x}-e^{-x}x)
\frac{d}{dx}(A(e^{-x}-e^{-x}x))
tangent of y=8xarccos(x-1),\at x=1
tangent\:y=8x\arccos(x-1),\at\:x=1
integral from t to 1 of (1/(x^2))
\int\:_{t}^{1}(\frac{1}{x^{2}})dx
derivative of (t^2+5)^2-7(t^2+5)
derivative\:(t^{2}+5)^{2}-7(t^{2}+5)
2x(dy)/(dx)-8y=x^{-8}
2x\frac{dy}{dx}-8y=x^{-8}
(dy)/(dx)=-x/y ,y(0)=1
\frac{dy}{dx}=-\frac{x}{y},y(0)=1
(\partial)/(\partial x)(e^{xy}+z)
\frac{\partial\:}{\partial\:x}(e^{xy}+z)
integral from-10 to 10 of x^2
\int\:_{-10}^{10}x^{2}dx
area 2/x , 1/2 x,1,2
area\:\frac{2}{x},\frac{1}{2}x,1,2
f(x)=(2x-8)^4(x^2+x+1)^5
f(x)=(2x-8)^{4}(x^{2}+x+1)^{5}
derivative of ln((2x-1/(x-1)))
\frac{d}{dx}(\ln(\frac{2x-1}{x-1}))
d/(du)(2u)
\frac{d}{du}(2u)
derivative of x(x^2+1)
derivative\:x(x^{2}+1)
derivative of f(x)=x^2-1,x=-1,x=1
derivative\:f(x)=x^{2}-1,x=-1,x=1
derivative of sec^2(7x)
derivative\:\sec^{2}(7x)
(y+1)y^'+x(y^2+2y)=x
(y+1)y^{\prime\:}+x(y^{2}+2y)=x
integral of (sqrt(x^2+16))/x
\int\:\frac{\sqrt{x^{2}+16}}{x}dx
derivative of 2x^3-8x
\frac{d}{dx}(2x^{3}-8x)
e^x+e^y(dy)/(dx)=0
e^{x}+e^{y}\frac{dy}{dx}=0
limit as x approaches 3-of |-x^2+9|
\lim\:_{x\to\:3-}(\left|-x^{2}+9\right|)
limit as x approaches 3 of 2x+1
\lim\:_{x\to\:3}(2x+1)
integral of e^{-cos(3x)}sin(3x)
\int\:e^{-\cos(3x)}\sin(3x)dx
x(dy)/(dx)-2y=3x^2+2x
x\frac{dy}{dx}-2y=3x^{2}+2x
sum from n=1 to infinity of n/(n^4+1)
\sum\:_{n=1}^{\infty\:}\frac{n}{n^{4}+1}
tangent of f(x)=x^2-4x,\at x=3
tangent\:f(x)=x^{2}-4x,\at\:x=3
integral of (2x+1)^3
\int\:(2x+1)^{3}dx
sum from n=1 to infinity of (n^2)/(5n)
\sum\:_{n=1}^{\infty\:}\frac{n^{2}}{5n}
d/(dt)(1/(1+t))
\frac{d}{dt}(\frac{1}{1+t})
tangent of f(x)=(x+2)^{1/2}
tangent\:f(x)=(x+2)^{\frac{1}{2}}
limit as n approaches infinity of ((\sqrt[5]{n}))/(\sqrt[5]{n)+7}
\lim\:_{n\to\:\infty\:}(\frac{(\sqrt[5]{n})}{\sqrt[5]{n}+7})
(\partial)/(\partial y)((9y)/(sqrt(x)))
\frac{\partial\:}{\partial\:y}(\frac{9y}{\sqrt{x}})
integral of sin(kx)
\int\:\sin(kx)dx
integral of (1-5x)
\int\:(1-5x)dx
area x^2+1,x+3,0,x=0
area\:x^{2}+1,x+3,0,x=0
limit as x approaches 7 of 6/(x-7)
\lim\:_{x\to\:7}(\frac{6}{x-7})
y^{'''}+5y^{''}+4y^'-10y=0
y^{\prime\:\prime\:\prime\:}+5y^{\prime\:\prime\:}+4y^{\prime\:}-10y=0
integral of 1/(tsqrt(9+4t^2))
\int\:\frac{1}{t\sqrt{9+4t^{2}}}dt
integral of (1-sqrt(x))/(sqrt(x))
\int\:\frac{1-\sqrt{x}}{\sqrt{x}}dx
derivative of (10log_{4}(t))/t
derivative\:\frac{10\log_{4}(t)}{t}
(\partial)/(\partial x)(x^2sin(xy))
\frac{\partial\:}{\partial\:x}(x^{2}\sin(xy))
sum from n=0 to infinity of 9^nx^n
\sum\:_{n=0}^{\infty\:}9^{n}x^{n}
9x^2y^'=y^'+9xe^{-y}
9x^{2}y^{\prime\:}=y^{\prime\:}+9xe^{-y}
integral of-2xsqrt(8-x^2)
\int\:-2x\sqrt{8-x^{2}}dx
limit as x approaches 0+of (x-|x|)/x
\lim\:_{x\to\:0+}(\frac{x-\left|x\right|}{x})
tangent of e^{x+1}
tangent\:e^{x+1}
-y^'+(2y)/x =(y^2)/x
-y^{\prime\:}+\frac{2y}{x}=\frac{y^{2}}{x}
limit as x approaches infinity of ln(3x)-ln(x+7)
\lim\:_{x\to\:\infty\:}(\ln(3x)-\ln(x+7))
(dy)/(dt)=2y+3e^{2t}
\frac{dy}{dt}=2y+3e^{2t}
derivative of 2xsqrt(x^2+1)
\frac{d}{dx}(2x\sqrt{x^{2}+1})
limit as x approaches 0 of ((9^x-7^x))/x
\lim\:_{x\to\:0}(\frac{(9^{x}-7^{x})}{x})
(\partial)/(\partial x)(2-6y)
\frac{\partial\:}{\partial\:x}(2-6y)
integral of 1/((xsqrt(x)))
\int\:\frac{1}{(x\sqrt{x})}dx
14x+(dy)/(dx)=0
14x+\frac{dy}{dx}=0
(dy)/(dx)=4y^2sec^2(2x)
\frac{dy}{dx}=4y^{2}\sec^{2}(2x)
derivative of g(x)=-8e^{x^2-1}
derivative\:g(x)=-8e^{x^{2}-1}
integral of (6x+7)/((9x^2+21x)^3)
\int\:\frac{6x+7}{(9x^{2}+21x)^{3}}dx
y^'=1-(4y)/(100)
y^{\prime\:}=1-\frac{4y}{100}
inverse oflaplace (e^{-spi})/((s)^2+1)
inverselaplace\:\frac{e^{-sπ}}{(s)^{2}+1}
derivative of (x^2/(x^3+8))
\frac{d}{dx}(\frac{x^{2}}{x^{3}+8})
derivative of 10sqrt(3)sin(x-10cos(x))
\frac{d}{dx}(10\sqrt{3}\sin(x)-10\cos(x))
integral of (x^2+2x-1)/((x+1)^2)
\int\:\frac{x^{2}+2x-1}{(x+1)^{2}}dx
derivative of f(t)=(1+sqrt(t))(8t^2-5)
derivative\:f(t)=(1+\sqrt{t})(8t^{2}-5)
sum from n=1 to infinity of (1+6/n)^{-n}
\sum\:_{n=1}^{\infty\:}(1+\frac{6}{n})^{-n}
derivative of (4x/(1-tan(x)))
\frac{d}{dx}(\frac{4x}{1-\tan(x)})
integral of 1/(x^2+60)
\int\:\frac{1}{x^{2}+60}dx
limit as x approaches infinity of 4xe^{(1/x)}-4x
\lim\:_{x\to\:\infty\:}(4xe^{(\frac{1}{x})}-4x)
integral of (sqrt(2y)-1/(sqrt(2y)))
\int\:(\sqrt{2y}-\frac{1}{\sqrt{2y}})dy
tangent of 2x^2-x^4
tangent\:2x^{2}-x^{4}
limit as x approaches-3 of 7/((x+3)^2)
\lim\:_{x\to\:-3}(\frac{7}{(x+3)^{2}})
tangent of f(x)= 3/x ,\at x=2
tangent\:f(x)=\frac{3}{x},\at\:x=2
(\partial)/(\partial x)(ln(7x^2+4y^2+8))
\frac{\partial\:}{\partial\:x}(\ln(7x^{2}+4y^{2}+8))
area y^2-3x=4,x-y=2
area\:y^{2}-3x=4,x-y=2
derivative of y= 2/x-x/2
derivative\:y=\frac{2}{x}-\frac{x}{2}
derivative of y=-sin(x)-1/x
derivative\:y=-\sin(x)-\frac{1}{x}
limit as x approaches 3+of 5x-[|x|]
\lim\:_{x\to\:3+}(5x-[\left|x\right|])
derivative of (25-x^2^{1/2})
\frac{d}{dx}((25-x^{2})^{\frac{1}{2}})
inverse oflaplace-(e^{-s})/(s^2)
inverselaplace\:-\frac{e^{-s}}{s^{2}}
integral of (x^3)/(sqrt(x^2+1))
\int\:\frac{x^{3}}{\sqrt{x^{2}+1}}dx
derivative of (sqrt(4-x^2)^2)
\frac{d}{dx}((\sqrt{4-x^{2}})^{2})
derivative of e^{z/((z-3))}
derivative\:e^{\frac{z}{(z-3)}}
1
..
1326
1327
1328
1329
1330
..
2459