Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (6+sqrt(x)+x)/x
\int\:\frac{6+\sqrt{x}+x}{x}dx
integral from 1 to 2 of (2-x)
\int\:_{1}^{2}(2-x)dx
integral of sin(pix)-cos(pix)
\int\:\sin(πx)-\cos(πx)dx
y^{1/2}((dy)/(dx))+y^{3/2}=1
y^{\frac{1}{2}}(\frac{dy}{dx})+y^{\frac{3}{2}}=1
derivative of (x^2+2x-5)/((x+1)^2)
derivative\:\frac{x^{2}+2x-5}{(x+1)^{2}}
f(x)=x-sin(x)
f(x)=x-\sin(x)
derivative of (4x^2/(e^{2x)sinh(2x)})
\frac{d}{dx}(\frac{4x^{2}}{e^{2x}\sinh(2x)})
derivative of (-4+x^2^{-1})
\frac{d}{dx}((-4+x^{2})^{-1})
derivative of (sqrt(x)/2-2/(sqrt(x)))
\frac{d}{dx}(\frac{\sqrt{x}}{2}-\frac{2}{\sqrt{x}})
integral of (x+pi)cos(nx)
\int\:(x+π)\cos(nx)dx
y^{''}+2*y^'+y=6*x*e^{-x}
y^{\prime\:\prime\:}+2\cdot\:y^{\prime\:}+y=6\cdot\:x\cdot\:e^{-x}
integral of tan^2(4x)sec^4(4x)
\int\:\tan^{2}(4x)\sec^{4}(4x)dx
tangent of 2sqrt(x)(1.2)
tangent\:2\sqrt{x}(1.2)
integral of sin^5(12x)
\int\:\sin^{5}(12x)dx
integral from 1 to 3 of 1/(sqrt(x)(1+x))
\int\:_{1}^{3}\frac{1}{\sqrt{x}(1+x)}dx
limit as x approaches 0+of x^{x^2}
\lim\:_{x\to\:0+}(x^{x^{2}})
integral from 0 to infinity of x/(x^2+1)
\int\:_{0}^{\infty\:}\frac{x}{x^{2}+1}dx
integral of e^{15x}(15)
\int\:e^{15x}(15)dx
limit as x approaches 4 of (x-4)/(x-2)
\lim\:_{x\to\:4}(\frac{x-4}{x-2})
area f(x)=cos(x),g(x)=-cos(x)+2
area\:f(x)=\cos(x),g(x)=-\cos(x)+2
slope of (-1.4)(3.12)
slope\:(-1.4)(3.12)
tangent of y=(-x^2+10x-21)^3
tangent\:y=(-x^{2}+10x-21)^{3}
derivative of (3x+2/(cos(x)))
\frac{d}{dx}(\frac{3x+2}{\cos(x)})
derivative of e^x-e^{xcos(x})
\frac{d}{dx}(e^{x}-e^{x\cos(x)})
integral from 0 to 3 of 4/(5x^2+6x+1)
\int\:_{0}^{3}\frac{4}{5x^{2}+6x+1}dx
integral from 0 to 1 of (x^3)/(x^4-1)
\int\:_{0}^{1}\frac{x^{3}}{x^{4}-1}dx
derivative of 9x+2
\frac{d}{dx}(9x+2)
y(1-t)dt+t^2(1-t)dy=0
y(1-t)dt+t^{2}(1-t)dy=0
derivative of-(2x/((x^2+1)^2))
\frac{d}{dx}(-\frac{2x}{(x^{2}+1)^{2}})
tangent of f(x)=4x^2-3x,\at x=-1
tangent\:f(x)=4x^{2}-3x,\at\:x=-1
limit as x approaches 2 of x^2+2x-7
\lim\:_{x\to\:2}(x^{2}+2x-7)
(\partial)/(\partial y)(sin(2y))
\frac{\partial\:}{\partial\:y}(\sin(2y))
integral from 0 to 3 of (2t)/((t-4)^2)
\int\:_{0}^{3}\frac{2t}{(t-4)^{2}}dt
derivative of (x^2-3x+2)/(-x^2-4x+4)
derivative\:\frac{x^{2}-3x+2}{-x^{2}-4x+4}
(\partial)/(\partial x)(y^4sin(5x))
\frac{\partial\:}{\partial\:x}(y^{4}\sin(5x))
inverse oflaplace 1/(s^2+9)
inverselaplace\:\frac{1}{s^{2}+9}
derivative of 1/(sqrt(8)+\sqrt[3]{9})
\frac{d}{dx}(\frac{1}{\sqrt{8}}+\sqrt[3]{9})
(\partial)/(\partial y)(y/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{y}{x+y})
derivative of f(x)=(14x-x^2)^3
derivative\:f(x)=(14x-x^{2})^{3}
integral of cos^2(x)sec^2(x)
\int\:\cos^{2}(x)\sec^{2}(x)dx
sum from n=0 to infinity of 1/(5n)
\sum\:_{n=0}^{\infty\:}\frac{1}{5n}
integral of sqrt((1-x)/(1+x))*1/(x^2)
\int\:\sqrt{\frac{1-x}{1+x}}\cdot\:\frac{1}{x^{2}}dx
integral from t to 0 of 1/(1+x^2)
\int\:_{t}^{0}\frac{1}{1+x^{2}}dx
derivative of f(x)=(40)/(0.01x^2+1)
derivative\:f(x)=\frac{40}{0.01x^{2}+1}
derivative of sqrt(3x+3)
\frac{d}{dx}(\sqrt{3x+3})
integral of xcos(x)-xsin(x)
\int\:x\cos(x)-x\sin(x)dx
integral of (4x^2)/(x^2+9)
\int\:\frac{4x^{2}}{x^{2}+9}dx
integral of e^{-st}sin(t)
\int\:e^{-st}\sin(t)dt
f(x)=sqrt(16-x^2)
f(x)=\sqrt{16-x^{2}}
integral from 1 to infinity of 1/(9x+2)
\int\:_{1}^{\infty\:}\frac{1}{9x+2}dx
taylor (x-3)e^x
taylor\:(x-3)e^{x}
implicit (d^2y)/(dx^2),y=\sqrt[7]{x}
implicit\:\frac{d^{2}y}{dx^{2}},y=\sqrt[7]{x}
integral of tan(x)+2cot(x)
\int\:\tan(x)+2\cot(x)dx
integral of (sec(7x))/7
\int\:\frac{\sec(7x)}{7}dx
integral of 1/(100x-x^2)
\int\:\frac{1}{100x-x^{2}}dx
integral of (5x^3-7x^2+3x+4)
\int\:(5x^{3}-7x^{2}+3x+4)dx
tangent of y=x^2+5
tangent\:y=x^{2}+5
derivative of-cos(3x)3
derivative\:-\cos(3x)3
derivative of (x^2-1/(4-x^2))
\frac{d}{dx}(\frac{x^{2}-1}{4-x^{2}})
integral of 7/(x(x^4+2))
\int\:\frac{7}{x(x^{4}+2)}dx
(ln(x))^x
(\ln(x))^{x}
integral of sqrt(4t^2+9t^4)
\int\:\sqrt{4t^{2}+9t^{4}}dt
(dy)/(dx)+cos(x)y=cos(x)
\frac{dy}{dx}+\cos(x)y=\cos(x)
integral of x/(x^2-x-2)
\int\:\frac{x}{x^{2}-x-2}dx
integral of 4x(x^3-1/4)
\int\:4x(x^{3}-\frac{1}{4})dx
derivative of f(x)=sqrt(1-2x)
derivative\:f(x)=\sqrt{1-2x}
derivative of (x^4)/4
derivative\:\frac{x^{4}}{4}
(y-2x-1)dx+(x+y-4)dy=0
(y-2x-1)dx+(x+y-4)dy=0
limit as n approaches infinity of 4^n
\lim\:_{n\to\:\infty\:}(4^{n})
area x=-2,x=3,y=2x^2+10,y=0
area\:x=-2,x=3,y=2x^{2}+10,y=0
tangent of f(x)=9e^xcos(x),\at x=0
tangent\:f(x)=9e^{x}\cos(x),\at\:x=0
(\partial)/(\partial v)(4ucos(v))
\frac{\partial\:}{\partial\:v}(4u\cos(v))
(\partial)/(\partial x)(1/(1+e^{-x)})
\frac{\partial\:}{\partial\:x}(\frac{1}{1+e^{-x}})
integral of (sin(3x))/3
\int\:\frac{\sin(3x)}{3}dx
integral of (-x)/(1+x)
\int\:\frac{-x}{1+x}dx
derivative of sqrt(x)e^{-x^2}
\frac{d}{dx}(\sqrt{x}e^{-x^{2}})
integral from 0 to 2 of x
\int\:_{0}^{2}xdx
f(x)=10^{sqrt(x)}
f(x)=10^{\sqrt{x}}
integral of sin(10t)
\int\:\sin(10t)dt
derivative of (2x+1)/(x+2)
derivative\:\frac{2x+1}{x+2}
taylor (7-3x^2)^{1/2},0
taylor\:(7-3x^{2})^{\frac{1}{2}},0
integral of 1/2+3/4 x^2-4/5 x^3
\int\:\frac{1}{2}+\frac{3}{4}x^{2}-\frac{4}{5}x^{3}dx
laplacetransform 3e^{(-2t)}
laplacetransform\:3e^{(-2t)}
area y= 4/x ,y=8x,y= 1/8 x
area\:y=\frac{4}{x},y=8x,y=\frac{1}{8}x
derivative of pi/9 cos(θ)
derivative\:\frac{π}{9}\cos(θ)
integral from 0 to 1 of x^2sqrt(1-x^2)
\int\:_{0}^{1}x^{2}\sqrt{1-x^{2}}dx
f(x)=xsin(2x)
f(x)=x\sin(2x)
y^'=(4y)/x
y^{\prime\:}=\frac{4y}{x}
integral from 0 to 7 of x^2sqrt(49-x^2)
\int\:_{0}^{7}x^{2}\sqrt{49-x^{2}}dx
y^'=(2t+1)e^y
y^{\prime\:}=(2t+1)e^{y}
(\partial)/(\partial y)(ln(x^4y))
\frac{\partial\:}{\partial\:y}(\ln(x^{4}y))
derivative of (2-3x^2^4(x^7+3)^3)
\frac{d}{dx}((2-3x^{2})^{4}(x^{7}+3)^{3})
(dy)/(dx)+7y=4
\frac{dy}{dx}+7y=4
d/(dz)(sqrt(z+1)-1)
\frac{d}{dz}(\sqrt{z+1}-1)
slope of x^2+8x+2
slope\:x^{2}+8x+2
limit as x approaches 1-of (|x-1|)/(x-1)
\lim\:_{x\to\:1-}(\frac{\left|x-1\right|}{x-1})
derivative of 3-(10/(3x^{1/6)})
\frac{d}{dx}(3-\frac{10}{3x^{\frac{1}{6}}})
sum from n=1 to infinity of (1-1/n)^2
\sum\:_{n=1}^{\infty\:}(1-\frac{1}{n})^{2}
inverse oflaplace 1/(s^2-3)
inverselaplace\:\frac{1}{s^{2}-3}
integral of (2x)/((1-x^2))
\int\:\frac{2x}{(1-x^{2})}dx
1
..
320
321
322
323
324
..
2459